Миграционные пути птиц, как птицы ориентируются в пространстве. Как ориентируются перелетные птицы Как птицы ориентируются в пространстве интересные факты

💖 Нравится? Поделись с друзьями ссылкой

Крылатые странники

Механизмы ориентации птиц

Самый трудный, до сих пор таящий множество загадок вопрос в изучении миграций птиц - это вопрос об их ориентации. Многие годы ученые бились над его разрешением, то ища специальные "органы ориентации", то приписывая феноменальные способности перелетных птиц инстинктам, "врожденному чувству направления". Как птицы узнают направление к местам гнездования и зимовок? Обучение молодых птиц старыми играет здесь ничтожную роль, так как часто молодые улетают раньше взрослых и путешествуют отдельно. Запомнить дорогу по видимым приметам птицы тоже не могут, так как многие летят ночью, за облаками, а возвращаются к местам гнездования другой дорогой. Многие орнитологи проводили опыт с птицами, завозя их в закрытых ящиках за сотни километров от дома. Ящики иногда вращали по дороге, чтобы исключить всякое запоминание. Скворцов увозили на 100-300 км от гнезда, соловьев - на 270 км, городских ласточек - на 317 км. Все они довольно быстро возвращались домой. Обыкновенные буревестники из Венеции вернулись к побережью Уэльса, пролетев 6000 км за 14 дней. Альбатросы вернулись на остров Мидуэй, пролетев 6590 км за 32 дня. Обыкновенные крачки возвращались, преодолевая расстояние в 600 км, серебристые чайки - 1300-1400 км.

О механизмах ориентации птиц при перелетах существует множество гипотез. Некоторые из них давно отброшены как не подтвержденные фактами, другие выглядят более убедительно. Однако вопрос о навигации птиц до сих пор нельзя считать решенным. Рассмотрим несколько гипотез.

Ориентация по ландшафтным признакам кажется наиболее естественной с точки зрения человека. Существуют так называемые направляющие линии: долины рек, побережья морей, распадки в горах и другие крупные детали ландшафта, которые птица может видеть с воздуха. Но чтобы ориентироваться по этим линиям, птица должна хотя бы раз увидеть их. Таким образом, ориентация молодых птиц, летящих самостоятельно, по этому признаку исключается. Птицы, летящие ночью, тоже не могут использовать направляющие линии. Многие морские птицы прекрасно ориентируются над открытым морем, где нет никаких примет. В этом случае гипотеза тоже не подтверждается.

Инфракрасное тепловое излучение с юга не может сигнализировать птицам о выборе пути, так как птицы не обладают повышенной чувствительностью к инфракрасной части спектра.

Итальянские ученые выдвинули гипотезу о том, что определенные области поверхности Земли имеют специфический запах. Орнитологи из ФРГ предположили, что обонятельные ощущения могут помочь птицам находить родные места. Они поставили опыт по изучению чувства дома (хоминга) у голубей. Птиц, разделенных на две группы, контрольную и опытную, отвезли на 180 км от голубятни. Опытной группе предварительно перерезали обонятельные нервы. Оперированные голуби сильно отклонялись от курса в отличие от птиц контрольной группы. Но эксперимент, проведенный по той же схеме со стрижом, не подтвердил эту гипотезу. Большинство орнитологов ее не принимает, так как у птиц обоняние вообще развито хуже, чем у других позвоночных.

Гипотеза обладания врожденным чувством направления ничем не доказана.

Одна из интереснейших проблем, касающихся поведения животных, - это вопрос о том, каким образом животные находят путь при миграциях на дальние расстояния. Хотя способность к навигации обнаружена у многих видов позвоночных, в наибольшей степени она проявляется у птиц при их перелетах на большие расстояния, что и по сей день остается самым непонятным явлением в поведении животных. Расстояния, которые птицы преодолевают при этом, огромны: например, полярная крачка размножается в Арктике, а зимует в Антарктике. Точность ориентации птиц также впечатляюща: они могут перелетать на другой континент, возвращаясь всегда на одно и то же место. Хотя такие перелеты вызывают множество интересных вопросов, все же наиболее важен вопрос о том, как птицы находят свой путь.

Типы ориентации

Существуют разные способы ориентации. Гриффин предложил для этого следующую классификацию:

Пилотирование - определение курса с помощью знакомых ориентиров. Многие виды птиц для определения направления полета используют какие-либо заметные особенности данной местности.

Ориентация по странам света - способность двигаться в направлении определенной страны света без каких-либо ориентиров. Некоторые виды птиц для определения направления полета используют различные ключевые стимулы. Если бы эти птицы ориентировались только по странам света, то отклонение от правильного курса по долготе привело бы к тому, что в конце концов они оказались бы далеко от их настоящей цели, так как они не смогли бы внести поправку на подобное смещение.

Истинная навигация - способность ориентироваться в направлении определенного места (цели) без соотнесения с ориентирами на местности. Животное, обладающее такой способностью, может внести поправку на отклонение от курса по долготе и прибыть в нужное место.

Вероятно, никакие миграции животных не вызывают у человека такого восхищения, как перелеты птиц. Ежегодно весной и осенью можно видеть, как перелетные птицы собираются в стаи, готовясь в дальнюю дорогу. Вскоре после этого они отправляются в путь, пролетая огромные расстояния до мест гнездовий или зимовок. Долгие годы ученые ничего не знали о маршрутах перелетов птиц. И только с введением метода кольцевания орнитологам удалось собрать сведения о маршрутах этих путешественников.

При кольцевании птице надевают на лапку алюминиевый браслетик. Молодых, еще не летающих птенцов метят, вынимая их на несколько секупд из гнезда, авзрослых - когда их удается поймать в силки. На каждом кольце выбит номер и шифр государственного учреждения, которое ведет картотеку всех птиц, окольцованных в данной стране. При обнаружении окольцованной птицы о месте ее поимки сообщают в это учреждение. Во время перелетов птицы придерживаются в основном некоторых определенных (или главных) трасс, называемых пролетными путями. Орнитологи США различают семь основных пролетных путей: вдоль атлантического побережья, над Аппалачами, вдоль Миссисипи, над Великими Равнинами, над горами Сьерра-Невада, вдоль тихоокеанского побережья и, наконец, поперек страны.

Хотя очень многие птицы летят по всем этим трассам, отдельные виды обычно выбирают определенные излюбленные пути. Некоторые виды, например, летят вдоль атлантического побережья, держа курс очень далеко - на Аргентину. Ширококрылые канюки, используя мощные воздушные течения над Аппалачами, почти без всяких усилий достигают нужных им мест, тогда как многотысячные стаи голубых гусей собираются в долине Миссисипи и зимуют в Луизиане. Другие птицы, живущие летом в низменных местах Великих Равнин и Канады, пересекают всю Северную Америку, направляясь на зимовку на юговосточное побережье. Хорошие летуны путешествуют днем, а большинство мелких птиц и некоторые осторожные крупные птицы летят ночью, а днем кормятся и отдыхают. Птицы обычно летят на высоте около 1000 метров. Многие птицы пролетают без отдыха огромные расстояния, чтобы скорее достигнуть своей цели. По имеющимся данным, золотистая ржанка может без посадки пересечь Атлантический океан - от Новой Шотландии до Южной Америки, что составляет около 4 тысяч километров. Чемпионом по дальности перелетов является полярная крачка: она гнездится, в Арктике, а зимует в Антарктике, пролетая ежегодно более чем по 40 тысяч километров.

Благодаря методу кольцевания удалось выяснить, что птицы данного вида из года в год летят по одним и тем же трассам. Есть птицы, которые каждую весну, пролетев тысячи километров, возвращаются на тот же самый куст или дерево, откуда они отправились на зимовку. Как объяснить столь замечательную способность птиц к навигации? Врожденное ли это свойство или приобретенное? У тех птиц, которые летят стаями, молодые особи, возможно, узнают дорогу от старших: они, так сказать, следуют за толпой. В пользу этого предположения говорит V-образный строй стан у таких птиц, как канадские казарки, у которых, по-видимому, дорогу указывает наиболее опытпып вожак. Однако у некоторых видов молодые птицы отправляются в путь значительно раньше стариков, а иногда стаи молодых даже летят по новым трассам.

Создается впечатление, что молодые птицы даже без руководства со стороны родителей от рождения знают, куда им надо лететь на зимовку. Однажды в городе Альберта (Канада) выпустили группу молодых окольцованных ворон, причем это было намеренно сделано спустя довольно много времени после того, как последняя ворона улетела из Канады к местам своей обычной зимовки в штатах Канзас и Оклахома (США). А впоследствии некоторые из этих окольцованных птиц были выловлены в различных пунктах, расположенных вдоль того пути, по которому обычно мигрируют вороны. По-видимому, при этом первом и к тому же самостоятельном перелете птицы руководствовались каким-то врожденным чувством направления. Возможно, что способность правильно определить общее направление полета при миграциях представляет собой врожденное свойство, однако, вероятно, необходим опыт - этот старый и мудрый учитель, чтобы общее направление превратилось в некий строго определенный маршрут.

Незадолго до начала второй мировой войны профессор Дрост обнаружил, что если каким-то образом «столкнуть» молодых птиц с обычного пути миграции они летят в направлении, параллельном этому пути. Если же подобный опыт проделывали с птицами постарше, то они стремились вновь вернуться па уже оевоенную ими в прошлом трассу. Осенью ястреб перепелятник летит из Скандинавии через Северное море и многочисленные мелкие водные преграды на юго-запад. Птицы пролетают через Северную Европу и заканчивают свое путешествие в Голландии, Бельгии или на севере Франции. Дрост отловил по нескольку молодых и взрослых перепелятников на одном из островов у северного побережья Европы, перевез их в Гиммель (Польша) и выпустил. Оказавшись на свободе, молодые ястреба продолжали лететь на юго-запад, как если бы с ними ничего не произошло; позднее все они были обнаружены в пределах узкой полосы, расположенной параллельно обычному маршруту скандинавских перепелятников, причем некоторые птицы оказались даже на франкоиспанской границе, на средиземноморском побережье.

Старые же птицы, уже летавшие по этому маршруту, отправились на запад, стремясь добраться до знакомой трассы. Многие из них были впоследствии обнаружены на традиционном маршруте. Для объяснения способности птиц к навигации предлагалось много теорий, нередко очень слабо обоснованных экспериментальными данными. Более 100 лет назад было выдвинуто предположение о наличии у птиц чего-то вроде «магнитного компаса», который позволяет им ориентироваться по магнитному полю Земли.

С тех пор в научных журналах разных стран периодически появлялись различные варианты этой теории. Магнитную теорию навигации птиц, по-видимому, окончательно опровергли эксперименты, в которых к крыльям почтовых голубей прикрепляли небольшие магнитики; было установлено, что эти магнитики не оказывают никакого влияния на способность птиц ориентироваться в полете. Если бы птицы действительно ориентировались по магнитному полю Земли, то собственные поля магнитов, прикрепленных к их крыльям, сбивали бы их с правильного курса. Высказывалось также предположение, что птицам помогают ориентироваться в полете так называемые силы Кориолиса, возникающие вследствие вращения Земли вокруг собственной оси. Силы Кориолиса достигают максимальных значений вблизи полюсов и ослабевают по мере приближения к экватору.

Авторы рассматриваемой теории утверждали, что птицы, летящие, например, с севера на юг, могут определять свое местонахождение по величине этих сил в данной точке. Однако вследствие незначительной величины сил Кориолиса, а также по ряду других причин можно предполагать, что они лежат за пределами чувствительности воспринимающих органов птиц. Поэтому большинство ученых не придали этой теории скольконибудь серьезного значения. В начале пятидесятых годов орнитологи в надежде разрешить загадку способности птиц к навигации обратились к небу. Послевоенные работы указывали на то, что разрешение этой проблемы следует искать именно в изучении неба, и в настоящее время по существу во всех исследованиях, касающихся ориентации птиц, так или иначе фигурируют какие-либо небесные ориентиры. . Солнечный компас. Ни у кого не возникает сомнений в том, что завтра утром взойдет солнце. Это одно из самых привычных явлений нашей жизни. Поэтому у некоторых ученых возникло естественное предположение, что птицы используют для навигации этот привычный небесный ориентир. В 1949 году Г. Крамер начал серию своих блестящих экспериментов по изучению способности птиц к навигации. В результате этих исследований было убедительно показано, что птицы могут ориентироваться по солнцу.

Обычно изучение способности птиц ориентироваться во время дальних полетов сильно затрудняет один из факторов изучаемого явления - большое расстояние. После того как птица осенью покидала свою гнездовую территорию, экспериментатор, в сущности, больше не видел ее до следующего года. Даже если птица была окольцована и впоследствии ее удалось обнаружить на каком-либо этапе ее пути, это дает весьма приблизительные сведения о ее маршруте. При этом остается неизвестным, какими ориентирами пользовалась птица на этом отрезке пути и какие другие факторы оказывали влияние на ее продвижение по маршруту. В ряде экспериментов для того, чтобы определить, каким образом голуби или дикие птицы, выпущенные вдали от их гнезд, находят путь домой, использовали самолеты.

Самолет кружил над летящими птицами на некотором расстоянии, для того чтобы не спугнуть их, а находившийся на борту экспериментатор наносил на карту путь птиц и наблюдал за их поведением во время полета. Совершенно очевидно, что возможности такого эксперимента были ограниченны, не говоря уже о том, что оставалось совершенно неизвестным, оказывал ли влияние на птицу шум моторов самолета. Крамеру удалось разрешить эту проблему, прибегнув к помощи самих птиц. Эксперименты этого ученого основывались на известном явлении миграционного возбуждения птиц.

Когда наступает время отлета, птицы начинают проявлять сильное беспокойство, их как бы охватывает жгучее нетерпение. Некоторые птицы, независимо от того, сидят ли они в клетке или находятся на свободе, поворачивают голову в направлении полета и машут крыльями. Время от времени они совершают короткие полеты в этом же направлении, а затем возвращаются назад. Возбуждение бывает настолько сильным, что птицы, находящиеся в неволе, иногда разбиваются о стенки клетки, преграждающие им путь к зимовке. Однажды осенью в вашингтонском зоопарке я видел ястреба, буквально бросавшегося на стенку своей проволочной клетки.

Он на несколько минут оставался прижатым к проволоке, а затем возвращался на жердочку. Его взгляд был устремлен в небо сквозь крышу клетки и зоркие глаза, казалось, видели его свободных собратьев, направлявшихся на юг. Время от времени птица повторяла свои тщетные попытки вырваться на волю. Для того чтобы испытать влияние солнца на перелетных птиц, Крамер построил под открытым небом центро-симметричпый шестигранный павильон с шестью окнами. В павильон поставили круглую проволочную клетку со стеклянным дном, в которую посадили -скворца Sturnus vulgaris, иаходившегося в состоянии миграционного возбуждения. Подопытная птица могла видеть сквозь окна павильона лишь небольшие участки неба. За поведением птицы можно было наблюдать сквозь стеклянное дно клетки, лежа в специальной камере под павильоном. Когда сквозь окна павильона светило солнце, скворец почти всегда поворачивал голову в сторону обычного направления миграции.

Если при помощи зеркал изменяли направление солнечных лучей на 90°, то скворец также поворачивался на 90°. По-видимому, скворец ориентировался по солнцу, независимо от того, было ли это настоящее солнце или же его отражение в зеркале. Если солнце бывало закрыто плотными облаками, птица совершенно утрачивала чувство направления и могла повернуться в любую сторону; если же сильный ветер разгонял облака и вновь показывалось солнце, скворец вновь принимал правильное положение.

Поскольку описанные эксперименты можно было проводить лишь в период миграционного возбуждения, Крамер разработал другой эксперимент, который давал больше времени для наблюдений относительно влияния солнца на способность скворцов определять направление. По периметру круглой клетки были расставлены на равном расстоянии друг от друга несколько совершенно одинаковых кормушек, что исключало возможность использовать их в качестве ориентиров. Каждая кормушка была накрыта сверху резиновой пленкой со щелями для клюва, с тем чтобы птица не могла видеть, какая кормушка содержит корм.

Затем Крамер старался приучить скворца к тому, что одна из кормушек, расположенная в определенном направлении от центра клетки, содержит корм. Так, например, ежедневно между 7 и 8 часами утра Крамер приучал скворца к тому, что кормушка, расположенная на восток от центра, т. е. почти на одной линии с солнцем, наполнена кормом. (Кормушки периодически смещали по периметру клетки, чтобы исключить возможность распознавания птицей какой-либо определенной кормушки.) После многочисленных попыток скворец научился выбирать именно восточную кормушку.

Этот эксперимент затем проводили в другое время суток (17.45), когда положение солнца было иным (на западе). При этом птица в большинстве случаев направлялась опять-таки к восточной кормушке. Если же Крамер при помощи зеркал «смещал солнце», то птица выбирала другую кормушку. По-видимому, птица ориентировалась по положению солнца, вводя поправку на время дня, с тем чтобы направиться к кормушке, находящейся на востоке, а когда «положение солнца» изменяли, птица сбивалась и делала ошибку. На основании этих результатов Крамер сделал вывод о наличии у скворца «часов», благодаря которым он может учитывать перемещение солнца во времени. В противном случае’ птица должна была бы «следовать за солнцем», т. е. во второй половине дня выбирала бы кормушку, расположенную на западе, - почти на одной линии с солнцем. Таким образом, поскольку птица могла научиться связывать положение кормугаки с положением солнца, то возможно, что и во время перелетов она использует в качестве компаса солнце. Совершенно независимо от Крамера профессор Кембриджского университета Дж. Мэттьюз также пришел к выводу, что птицы используют солнце в качестве ориентира.

Однако Мэттьюз сделал еще шаг вперед, предложив гипотезу «солнечной дуги», основанную на широком изучении исключительной способности почтовых голубей и диких птиц находить родной дом. Необыкновенная способность почтовых голубей находить путь к своей голубятне широко использовалась как в военное, так и в мирное время. В период первой мировой войны, например, почтовые голуби приносили донесения из находящихся на передовой окопов, а теперь они участвуют в соревнованиях на скорость и дальность полета, устраиваемых любителями голубиного спорта. Соревнования, в которых голубей выпускают на расстоянии до 1800 километров от дома, стали в последнее время совершенно обычными. Многие дикие птицы, выпущенные на незнакомой территории, также могут возвращаться назад, к своим гнездам. Малый буревестник, который пересек Атлантический океан на пути от Бостона до Англии, представляет выдающийся пример такой способности.

Многие из этих буревестников, обитающих на прибрежных или океанических островах, если их выпустить на волю во внутренних областях континента, вдали от моря, сразу же летят в направлении к побережью. Мэттьюз выпустил 338 окольцованных буревестников на различных расстояниях от их гнезд (от 300 до 600 километров). Многие птицы не просто вернулись к своим гнездам, но определили нужное направление полета в течение нескольких минут после освобождения, как если бы они располагали картой и компасом. Однако, как и в экспериментах Крамера со скворцами, способность птиц находить дорогу к дому в облачную погоду сильно уменьшалась. По мнению Мэттьюза, птицы определяют географическое положение незнакомой им местности, оценивая путь, который проходит солнце по небосводу.

Птица обладает чем-то таким, что заменяет ей точные навигационные приборы, которыми пользуется человек. Моряк, например, может определить широту своего корабля при помощи специальных таблиц и секстанта - инструмента, который измеряет высоту солнца над горизонтом. В полдень, когда солнце стоит на небе выше всего, секстант дает широту данной точки на поверхности земли. Чем выше солнце в полдень, тем южнее находится данная точка в северном полушарии. Мэттьюз предполагает, что с помощью своего «секстанта» птицы могут «вычислить» высоту солнца в любое время дня, последив за ним всего несколько минут. Измерив крошечный отрезок пути, который описывает солнце по небу за этот очень короткий промежуток времени, птицы могут установить, в какой точке неба солнце будет находиться в полдень. Затем, сравнивая высоту солнца над горизонтом в данной местности с высотой его «дома», птица может узнать, на север или на юг надо лететь к своему гнезду. Определение высоты солнца над горизонтом можно использовать и для вычисления долготы местности. Например, в полдень солнце в западной части НьюЙорка стоит ниже, а в восточной - выше, тогда как в Калифорнии в этот момент солнце едва только поднимается над горизонтом.

Для пассажиров же корабля, находящегося у восточного побережья Лонг-Айленда, солнце в этот момент уже достигнет наибольшей высоты над горизонтом и начнет «скатываться» в западную часть неба. Если у пассажира этого корабля есть точные часы, показывающие нью-йоркское время, он может легко определить, к востоку или к западу от НьюЙорка находится корабль. Для этого нужны часы, называемые хронометром. Это точный прибор, необходимый для навигации. Аналогичным образом птица, имеющая «хронометр», показывающий ее «домашнее» время, может по положению солнца определить, к востоку или к западу от гнезда она находится. Теория Мэттьюза вызвала вполне обоснованную критику. Во-первых, за то время, которого достаточно птицам для определения своего местонахождения, солнце практически не сдвигается на небосводе. В экспериментах самого Мэттьюза буревестники выбирали общее направление полета в течение нескольких минут.

В других экспериментах было установлено, что некоторым голубям достаточно для этого даже 20 секунд. Солнце же описывает на небе дугу примерно в один градус за каждые 4 минуты, что соответствует 7 расстояния от линии горизонта до зенита. Для того чтобы определить на глаз такое изменение положения солнца и на основании этой оценки - точку наивысшего положения солнца над горизонтом, птице пришлось бы провести совершенно фантастические расчеты. Кроме того, орнитологам, повторившим эксперименты Мэттьюза, но в гораздо больших масштабах, не удалось воспроизвести его результаты.

Тем не менее, несмотря на множество недостатков теории Мэттьюза, она пока что дает наиболее правдоподобное объяснение ориентации птиц при дневных полетах. Путь в ночи. На протяжении тысячелетий звезды и созвездия ночного псба служили для человека не только источником вдохновения, но и помогали ему ориентироваться в ночное время. По звездам водили свои корабли древние мореплаватели. Древние греки и римляне считали, что «звезды сделаны пз горящих облаков»; они давали названия звездам, и мы до сихпор пользуемся греческими и латинскими названиями звезд и созвездий. Однако теперь мы знаем, что еще более древние астрономы имеются в. царстве животных.

В сущности, это даже не астропомы, а скорее древнейшие из мореплавателей, потому что, путешествуя в воздушном океане, они ориентировались по звездам задолго до того, как весло человека впервые погрузилось в морскую воду. Речь идет о птицах, совершающих свои перелеты в ночное время. Известно, что многие птицы пускаются в путь только под покровом темноты. Если в период миграций паправить в почное небо луч радиолокатора, то обнаружится, что ночью в небе гораздо больше птиц, чем днем. Ф. Зауэр получил несомненные доказательства того, что певчие птицы, мигрирующие ночью, ориентируются именно по звездам.

Весной и летом в Северной Европе можно видеть множество певчих птиц, которые выкармливают своих птенцов, гнездясь в кустарниках и живых изгородях парков и садов. С наступлением осени все они, стар и млад, отправляются зимовать в Африку. Одна из таких птиц, славка-завирушка (Sylvia curruca), летит обычно с севера на юго-восток через Балканы, а затем, пролетев над Средиземным морем и путешествуя в основном по ночам, направляется по долине Нила на юг, к месту своей постоянной зимовки в верховьях этой реки. Зауэр провел в планетарии очень остроумный эксперимент: он заставил славку-завирушку, выращенную в его лаборатории, совершить «путешествие в Африку», не покидая клетки.

Находясь под искусственным звездным небом, птица продемонстрировала ученым свою изумительную способность к «навигации». Когда на купол планетария спроецировали картину осеннего неба, характерную для Северной Европы, птица, сидящая в клетке, повернулась на юго-восток, то есть в ту сторону, куда она обычно летит осенью. Затем расположение звезд и созвездий на искусственном небе постепено изменяли так, чтобы птице казалось, что она перемещается по миграционному маршруту. Когда на куполе планетария появилось изображение неба юга Греции, птица повернулась сильнее к югу, а как только картина неба стала соответствовать небу Северной Африки, славка «взяла курс» прямо на юг. Конечно, птица сидела на месте и не пролетала ни над морями, ни над лесами, однако вела она себя так, как будто ее длительное путешествие подходило к концу.

Птица, которая провела всю свою короткую жизнь в клетке и никогда не видела неба, продемонстрировала врожденную способность ориентироваться по звездам. Она следовала по пути своих предков. Сильный «сдвиг по долготе» привел к таким же результатам. При появлении картины неба, характерного для Сибири, птица какое-то время находилась в растерянности. Такое изменение вида ночного неба было равносильно тому, как если бы ее в одно мгновенье перебросили на несколько тысяч километров на восток. Сбитая с толку птица взволнованно смотрела на незнакомое небо и с минуту оставалась неподвижной. Затем она резко повернулась и попыталась лететь (в клетке!) на запад,» т. е. стремилась вернуться назад, туда, где была раньше. Картину ночного неба постепенно меняли, как будто птица летела в Европу, и, оказавшись наконец под «осенним небом Северной Европы», она снова повернулась на юг, в направлении обычного осеннего маршрута славок. Когда на куполе планетария появилось небо Вены, птица повернулась еще больше на юг. Узнала ли она какую-то звезду или созвездие, которые, как подсказывала ей врожденная способность ориентироваться, должны быть видны при миграцпн. на юг? Наконец на куполе планетария звезды приняли такое же положение, как и на настоящем небе над планетарием, и славка повернулась на юго-восток - в направлении своей обычной миграции.

Птица снова была дома. Результаты этого эксперимента свидетельствуют о том, что славка, по-видимому, сопоставляет расположение звезд на ночном небе не только с временем суток, но и с временем года. Увидев незнакомое небо Сибири, птица обратилась к своим «часам и календарю», спрятанным где-то под перьями, и, выяснив, где в данное’ время должна наблюдаться именпо такая картина звездного неба, определила свое местонахождение. Вряд ли можно сомневаться, что славка при этом ориентировалась по звездам. Без всяких видимых ориентиров, взглянув лишь один раз на небо, птица точно определяла, где она находится. Столь сложная и точная система навигации у существа весом всего лишь около 30 граммов кажется совершенно поразительной. Ведь помимо всего прочего взаимное расположение звезд на черном бархате неба постоянно меняется: для каждого времени года характерно свое расположение звезд и каждую ночь звезды и созвездия движутся по небосводу.

Быть может, Полярная звезда, постоянно находящаяся близ северпого полюса неба, служит небесным маяком для летящих ночью птиц? Однако эксперименты доктора Зауэра заставили отвергнуть это предположение. Что же нам остается? Отрицать наличие у птицы высокоорганизованной системы навигации только потому, что мы не в силах объяснить ее устройство и принцип действия? При выдвижении гипотез о системах ориентации разных животных вряд ли будет правильным исходить из того, что существует некая единая система ориентации, свойственная всем птицам и даже всем животным. Несомненно, например, что сильная облачность мешает большинству птиц правильно ориентироваться и днем и ночью; погвидимому, солнце и звезды служат ориентирами для птиц. Но как же в таком случае объяснить, что однажды стая кайр достигла одного островка в Беринговом море раньше корабля, который она обогнала в густом тумане и который двигался к тому же острову, ориентируясь по компасу? Как ориентировались эти птицы? Ответ на этот вопрос может дать только будущее.

Чтобы правильно проложить курс к намеченной цели, штурман корабля или самолета прибегает к помощи сложных навигационных приборов, пользуется картами, таблицами, а теперь и GPS навигацией, gps мониторингом . Тем более удивительной кажется в связи с этим способность птиц и животных поразительно точно ориентироваться относительно поверхности земли. Особенно безошибочно ведут себя в пространстве пернатые. Расстояния, которые преодолевают птицы во время сезонных миграций, иногда очень большие. Так, например, полярные крачки совершают двухмесячный перелет из Арктики в Антарктику, покрывая около 17 тысяч километров. А кулики мигрируют с Алеутских островов и Аляски на Гавайские острова, пролетая над океаном около 3 300 километров. Эти факты представляют интерес не только с точки зрения физиологии. Особое удивление вызывает безошибочная ориентировка птиц над океаном. Если при полете над сушей можно предполагать наличие каких-либо привычных зрительных ориентиров, то какие же ориентиры могут встретиться на однообразной водной поверхности?

Известно также, что птицы после дальних странствий всегда возвращаются на свои места. Так, американские крачки, перевезенные на 800-1200 километров от своих гнездовий, через несколько дней вернулись на старые места, к берегам Мексиканского залива. Подобного рода опыты были проделаны и с другими птицами. Результаты были те же.

Определенной способностью к ориентировки обладают не только «пролетные», но и «оседлые» птицы (тренированный может вернуться в голубятню с расстояния 300-400 километров). Способности птиц ориентироваться в пространстве были известны еще в древности. Тогда уже пользовались голубиной почтой. Однако сами по себе наблюдения за перелетами птиц, их поведением практически ничего не дали для выяснения причин ориентировки. До сих пор по этому вопросу существуют лишь многочисленные догадки и теории.

Английский ученый Метоз опытным путем установил, что почтовые голуби в пасмурные дни ориентируются хуже. Выпущенные с расстояния более 100 километров, они отклонились на известный угол от правильного направления полета. В солнечный день эта ошибка была значительно меньшей. На этом основании было выдвинуто мнение, что птицы ориентируются по солнцу.

Известно, что ориентировка по солнцу в природе действительно существует. Так, например, некоторые водные насекомые, морские пауки обладают способностью ориентироваться по солнцу. Выпущенные в открытое море, они безошибочно устремятся обратно к берегу – обычному месту их обитания. При изменении положения солнца на небосводе пауки изменяют соответственно и угол и направления движения.

Все эти факты в какой-то степени говорят в пользу теории Метоза. Однако существенным возражением против нее являются ночные перелеты многих птиц. Правда, некоторые ученые считают, что в данном случае птицы ориентируются по звездам. Широкое распространение получила так называемая магнитная теория. Идея о существовании у птиц особого, «магнитного чувства», позволяющего им ориентироваться в магнитном поле Земли, была высказана еще в середине 19-го столетия академиком Мидендорфом. Впоследствии эта теория нашла много приверженцев. Однако многочисленные лабораторные опыты, во время которых создавались магнитные поля, по напряженности во много раз большие, чем магнитное поле Земли, не оказывали на птиц видимого влияния.

В последнее время «магнитная теория» подверглась критике со стороны физиологов и физиков. Тем не менее, нельзя не отметить, что к некоторым особым видам электромагнитных колебаний пролетные птицы проявляют определенную чувствительность. Так, например, любители-голубеводы давно отмечали, что голуби хуже ориентируются вблизи мощных радиостанций. Их заявления обычно всерьез не принимались. Но во время второй мировой войны были получены многочисленные сведения о влиянии на пролетных птиц ультракоротких волн, излучаемых радиолокационными установками (радарами). Любопытно, что на сидящих птиц даже с очень близкого расстояния, излучение радара не оказывало видимого воздействия, но излучение, направленное на летящих птиц разбивало их строй.

С точки зрения , науки, изучающей условия жизни различных животных. наличие у птиц способности ориентироваться в пространстве вполне закономерно. Необычайная скорость передвижения и возможность за короткий срок покрывать значительные расстояния выделяет птиц из среды других представителей живого мира нашей планеты. Поиски корма далеко от гнезда, несомненно, способствовали выработке необычайных по сравнению с другими животными способностей ориентироваться в пространстве. Однако, как мы видим, механизм этого интересного явления еще не раскрыт. Пока можно лишь предположить, что сложный инстинкт птиц основан не на одном каком-либо факторе. Возможно, он включает в себя элементы астрономической ориентировки по солнцу, тем более что ряд животных обладает такой способностью.

Очевидно, важную роль может играть и зрительная ориентировка по поверхности Земли, если учесть, что зрение птиц отличается рядом особенностей. Есть безусловно, и еще какие-то важные, пока неизвестные науке факторы. Входит ли в их число, так называемое магнитное чувство птиц, сказать с достоверностью пока нельзя. Только дальнейшие исследования с участием ученых различных специальностей помогут видимо, разрешить эту загадку природы.

Пожалуй, самая обширная, представительная и в то же время прекрасная, удивительная и малопознанная до загадочности категория представителей фауны нашей планеты – это птицы. Кажется, всё перед глазами, то есть над головой, но до сих пор не все тонкости их существования открыты и изучены.

Несмотря на то, что отряд птиц населяет Землю около 160 миллионов лет (предшественниками птиц были птеродактили), мало что известно о сезонной миграции этих существ, об их длительных перелётах. А главное –об уникальной возможности ориентации на огромном пространстве земного шара.

Читая не такие уж и многочисленные издания и научные исследования, можно сделать вывод, что исследованиями именно ориентации птиц в перелётах учёные стали заниматься всего около сотни лет назад. И до сих пор нет однозначных и конкретных ответов на все интересующие вопросы. В основном информация на уровне гипотез.

Впрочем, это не удивительно. Считается, что наша цивилизация прошла только 5-7 процентов своего существования, и такой же путь за плечами науки и других отраслей познания.

Отмечу, что лично мне пришлось два десятка лет заниматься радиолокационным и визуальным контролем за воздушным пространством, объектами обнаружения в котором достаточно часто были именно птицы как воздушные цели. Так что определённое представление об этой теме имею.

Конкретно об ориентации перелётных птиц в их полётах

Известно, что далеко не все пернатые остаются зимовать в местах обитания. Как пел Владимир Высоцкий , «всё стремится к теплу от морозов и вьюг». Хотя это мнение барда ныне оспаривается учёными-оппонентами.

Оставим пока тот факт, что не все пернатые летят на юг. Некоторые виды предпочитают северные окраины континента. Но согласитесь, способность ежегодно с завидной настойчивостью преодолевать два раза в год десятки тысяч километров и не ошибаться желаемым «аэродромом» вызывает порою изумление. Ведь нет у птиц, как у их конкурентов – созданных руками человека летательных аппаратов, ни современного навигационного оборудования, ни наземных систем слежения и контроля за полётами, способных в любое время определиться с местом нахождения, сверить курс и откорректировать маршрут.

Что же по птичьей навигации можно сказать?

Вариантов исследователями выдвигалось много. Это визуальная ориентация по особенностям местности, инфраструктуре, дорогам железным и шоссейным, городам. Что ж, это, возможно, и соответствует действительности, но, прежде всего, для оседлых, относительно далеко не улетающих птиц. Затем по солнцу, луне, звёздам и их расположению, другим постоянно существующим факторам. Однако как основные многие из этих гипотез рано или поздно отвергались не столько из-за разнообразия видов птиц, сколько из-за ещё большего разнообразия особенностей их поведения.

Ныне преобладающей, с развитием науки, стала гипотеза, что ориентация и навигация перелётными птицами производится с использованием магнитного поля планеты, которое существует между полюсами. Сие суждение впервые было высказано более 100 лет назад русским академиком А. Миддендорфом . Вначале оно имело успех, а затем его то признавали, то отрицали, не предлагая ничего существенного взамен. Ибо при тех методах, которыми тогда пользовались для проверки, идея не могла быть ни доказана, ни опровергнута.

Опыты в основном проводили на голубях, которые, как известно, не являются перелётными птицами. К голове, лапкам или крыльям птиц прикрепляли маленькие магнитики, чтобы узнать, как они действуют на полёт. Нормальный полёт из-за этого нарушался, но никакого ответа на возникающие вопросы получить было нельзя.

В настоящее время геомагнитная ориентация птиц в направлении полёта (наряду с другими ориентирами) якобы доказывается теоретически и экспериментально. Интересно, что на командных пунктах радиотехнических войск, как документ, висит «Карта орнитологической обстановки» с нанесёнными сложившимися маршрутами полёта птиц. Что стоит отметить, основной маршрут перелётных птиц, начинающийся в районе Бреста, идёт на северо-восток республики, где, похоже, птицы собираются в большие стаи, подкармливаются на дальнюю дорогу, а затем следуют в южном направлении. Однако это основывается на обобщённых многолетних наблюдениях. И только.

Обратимся к исследованиям более современного периода

В зоологическом институте во Франкфурте-на-Майне малиновок помещали в большую камеру, внутри которой создавались искусственные магнитные поля. С помощью этих полей можно было компенсировать геомагнитное поле или создавать другие его напряжённости. От всех других внешних ориентиров птицы были изолированы.

При нормальном геомагнитном поле птицы правильно выбирали направление для миграционного полёта. При ослаблении поля в 2-4 раза или усилении в два раза подконтрольные беспорядочно метались по камере, потеряв всякую ориентацию. Собирались вместе вновь лишь вне пределов зоны излучения. Подобные нарушения навигационных способностей у перелётных птиц наблюдаются и во время сильных магнитных бурь.

Кстати, насчёт чувствительности птиц к радиоизлучениям сверхвысоких частот. Если кто не знает, воздушные цели, к коим относят и обнаруживаемые плотные стаи птиц, на экранах радиолокационных станций имеют отметку, схожую с отметкой реальной малоскоростной цели, например воздушных шаров, вертолётов, легкомоторной авиации, метеообразований или ещё чего-то подобного.

Одним из проверенных способов распознавания типа «птицы или цель» является облучение этой цели прямым излучением РЛС, в частности радиолокационным высотомером. После некоторого времени интенсивного облучения, если цель – это стая птиц, она рассыпается. Вот так на практике и распознают стаи птиц.

А недавно биологи впервые выдвинули и обосновали версию, как перелётные птицы чувствуют магнитное поле.

«Есть две гипотезы , – объясняет Дмитрий Кишкинев , сотрудник одного из университетов Канады, – магнитная и ольфакторная (обонятельная). В настоящее время учёные активно ищут органы магниторецепции, которые могут служить птицам внутренним компасом. По одной версии, у птиц в сетчатке глаз есть определённые фоторецепторы, которые могут видеть магнитное поле. Было вроде как доказано, что чувствительность к магнитному полю завязана на зрение. Считается, что сетчатка содержит светочувствительные белки – криптохромы, которые под воздействием света и магнитного поля могут по-разному возбуждаться в зависимости от ориентации его силовых линий. Второй вариант предполагал, что у птиц в надклювье есть магниточувствительный орган – 15 лет назад там были найдены клетки, содержащие большое количество оксида железа. Учёные тогда решили, что это и есть искомый магниторецептор, соединенный с мозгом птицы тройничным нервом».

На этом тогда и остановились

Почему? Да потому, что досконально органы птиц в разрезе разрешения интересующих вопросов практически не изучены. Учёные разделяют способность в ориентации (выбору направления) птиц и навигации – умение не только поддерживать строгое направление движения, но и представлять своё истинное местоположение относительно цели.

Благодаря экспериментам, которые ведутся с 60-х годов, учёные полагали, что ориентироваться птицы могут несколькими способами.

Научные сотрудники под руководством Кишкинева ловили камышовок на биологической станции Рыбачий (Куршская коса, Калининградская область) весной, когда птицы летят на север. По данным кольцевания, биологи знают, что эти птицы должны лететь для гнездования либо в Прибалтику, либо в северо-западную часть России (в Ленинградскую область, Карелию), либо на юг Финляндии. Пойманных птиц самолётом привезли в Москву, и часть из них была прооперирована: одной половине камышовок перерезали тройничный нерв, а другой произвели такой же надрез клюва, но без перерезания нерва. Это делалось для того, чтобы исключить влияние на навигацию птиц самого факта операции на клюве.

Чтобы узнать, как повлияет операция на навигацию птиц, их привезли на биостанцию МГУ под Звенигородом, но выпускать их по каким-то причинам не стали. Для изучения миграционного поведения птиц был использован метод с клеткой Эмлена . Она представляет собой конус с сеткой наверху, через который птица может видеть звезды. Суть метода в следующем: в сезон миграции птицу сажают в эту клетку, и, когда у неё начинается миграционный «драйв», она начинает прыгать и оставлять на стенках конуса следы в том направлении, куда ей надо лететь по природному зову. Эксперимент, результаты которого были опубликованы в научной прессе, показал, что птицы с перерезанным нервом не чувствовали, что их перевезли, – они продолжали ориентироваться на северо-восток, считая, что они по-прежнему в Калининградской области. А ложно оперированные птицы поняли, что находятся за тысячу километров от места поимки, и скомпенсировали направление с северо-восточного на северо-западное.

Учёные считают, что перерезанный нерв передавал в мозг птицы некоторую информацию, скорее всего по магнитному полю, о её текущем местоположении на поверхности Земли. Но, чтобы знать своё местоположение, птице либо надо иметь в себе «сетку» магнитного поля Земли либо знать характер его изменения по долготе и широте.

Но где эта «сетка» и как знать изменение поля?

«Мне кажется, вариант с сеткой очень сложный, ведь природа всегда выбирает менее точные, но простые механизмы. Скорее всего, птицы чувствуют, что при перемещении напряжённость поля слишком растёт, и при превышении некоторого порога, который генетически задан, у птицы включается “аварийный план”. Вместо режима “лететь на северо-восток” её бортовой компьютер переключается в режим “лететь на северо-запад», – пояснил автор исследования.

Так что этот эксперимент можно было считать незавершённым. Тем более что сами магнитные рецепторы в надклювье до сих пор не найдены; более того, последние исследования показали, что железосодержащие клетки являются не нервными, а макрофагами, потребляющими бактерий. И такие клетки найдены не только в клюве, но и в других тканях.

То есть налицо мы имеем ситуацию, сложившуюся не в пользу современной мировой науки: множество наблюдений подтверждают, что пернатые прекрасно ориентируются, в особенности в ходе длительных сезонных перелётов на огромные расстояния – пролетая над обширными океанскими просторами без визуальных «контрольных точек», не только по магнитному полю Земли, но и корректируя свои маршруты с учётом магнитного склонения, то есть делая поправку на угловые расхождения направлений географического и магнитного полюсов Земли. А вот найти биологический механизм определения этих магнитных меридианов, то есть пресловутый «птичий компас», и выяснить принцип его работы человек пока не в состоянии.

Зато появилась очередная смелая и неожиданная версия. Если «миграционное беспокойство» – одна из важных причин начала миграции птиц, то возникает вопрос: не является ли непосредственным стимулом к перелётам повышение магнитной активности (примерно вдвое), которое происходит на Земле дважды в году – в периоды весеннего и осеннего равноденствия – в периоды их (птиц) миграции?

Вот и всё, что можно сказать на сегодняшний день. Гипотезы есть, а пойти дальше человек, «царь природы», пока не может.

Просто некоторая информация

Обыкновенная крачка покинула своё гнездо в Финляндии около 15 августа 1996 года и была поймана 24 января 1997 года в Австралии. Она пролетела 25 750 км. Высота полёта обычно не превышает 3 тысяч метров, однако отмечались случаи набора высоты до 6 300 метров (радарные измерения).

Основные пути миграции из европейской части России: из почти двух сотен видов улетающих птиц 16 отправляются в Австралию, 16 – в Северную Америку, 5 – в Южную, 95 – в Африку.

Лебеди, аисты, журавли и гуси летят семьями или крупными сообществами. Аисты во время длительных перелётов периодически могут засыпать на лету на 10–15 минут.

Стаю, как правило, возглавляет самая опытная птица – вожак, уже летавшая по этому маршруту. Однако были замечены случаи замены вожака в полёте летевшими следом «заместителями», а также слияния двух клиньев в один. Причём было заметно, что происходило это в случаях, когда часть птиц уставала в полёте и они начинали вываливаться «из строя». И напрашивался вывод, что временное слияние клиньев делалось для моральной поддержки уставших. Было заметно, что более сильные птицы как бы вталкивали ослабевших в строй. Через некоторое время выровненные клинья вновь делились на несколько и продолжали уже нормальный полёт.

И ещё нечто невероятное

В подразделениях, обеспечивающих полёты авиации и управления ею, на вооружении у нас были приводные радиостанции типа ПАР-8 (затем более современные системы). Эти системы представляют собой передатчик средневолнового диапазона, излучающий код Морзе. Причём набор знаков устанавливается индивидуальным для каждого конкретного радиопривода.

Антенна представляла четыре параллельных троса-излучателя, расположенных на высоте на мачтах. Эта антенна формировала в противоположных направления две диаграммы направленности, то есть два луча. И самолёт, принявший именно этот набор, ориентируясь на максимум излучения, выходил именно на этот привод. И в периоды сезонных перелётов, в частности, журавлей, мы каждый раз замечали, что стаи выходили прямо на наш привод, а затем корректировали дальнейшее направление полёта.

Несмотря на то, что в шести километрах от нашего небольшого подразделения был расположен центральный городок, весьма обширный, с трёх-четырёхэтажными зданиями, трубами и прочим, который мог служить намного более контрастным визуальным ориентиром. Получается, что птицы улавливали излучение привода?

Стоит отметить, что на этих антенных тросах на ночёвку останавливались стаи более мелких птиц. Благо прочность позволяла. А после ночного отдыха полёт продолжался. Возможно, находить такое нетрадиционное место отдыха в темноте им также помогало излучение радиопривода. Стоит сказать, что деревьев вокруг не было, местность пустынная, а высоковольтная линия, тогда ещё не подключённая, находилась в стороне от птичьих трасс и их, видимо, не устраивала.

Часть моих однокашников по выпуску получила распределение на флот, в частности на корабли командно-измерительного комплекса, обеспечивающие постоянное наблюдение за космическими объектами. В том числе и обитаемыми. Ребята рассказывали о случаях, когда стаи птиц, обычно в ненастную погоду, находили посреди океанов (по радиоизлучению корабельных средств?) эти судна и, чтобы не погибнуть, буквально облепливали их палубы, оборудование и надстройки. И после того как распогодится, подкормленные моряками, возобновляли полёт. Предварительно делая вокруг корабля прощальный облёт. Естественно, кроме тех, кто погибал. Подобное рассказывали и моряки других военных судов. Орнитологи такой облёт считают не знаком благодарности, а проверкой крыльев и способности стаи продолжать полёт.

И пока птицы не будут досконально изучены, пока не будет создан эффективный, хотя бы в виде действующего макета, махолёт как действующая копия птицы, видимо, гипотезы так ими и останутся.

Рассказать друзьям