Основные принципы выбора способа получения заготовок. Выбор способа получения заготовок Способ получения заготовки определяется технологическими условиями

💖 Нравится? Поделись с друзьями ссылкой

Вид заготовок

Доля

заготовок

Вид заготовок

Доля

заготовок,

Сварные конструкции

Поковки:

Отливки

39,65

штампованные

в том числе из:

из слитков

чугуна

28.28

Изделия из металлических порошков

0,05

стали

цветных металлов

2,07

В настоящее время средняя трудоемкость заготовительных работ в машиностроении составляет 40...45% общей трудоемкости производства машин. Главная тенденция в развитии заготовительного производства состоит в снижении трудоемкости механической обработки при изготовлении деталей машин за счет повышения точности их формы и размеров.


Основные понятия о заготовках и их характеристика

Заготовка, основные понятия и определения

Заготовкой, согласно ГОСТ 3.1109-82, называется предмет труда, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь.

Различают три основных вида заготовок: машиностроительные профили, штучные и комбинированные. Машиностроительные профили изготавливают постоянного сечения (например, круглого, шестигранного или трубы) или периодического. В крупносерийном и массовом производстве применяют также специальный прокат. Штучные заготовки получают литьем, ковкой, штамповкой или сваркой. Комбинированные заготовки - это сложные заготовки, получаемые соединением (например, сваркой) отдельных более простых элементов. В этом случае можно снизить массу заготовки, а для более нагруженных элементов использовать наиболее подходящие материалы.

Заготовки характеризуются конфигурацией и размерами, точностью полученных размеров, состоянием поверхности и т.д.

Формы и размеры заготовки в значительной степени определяют технологию как ее изготовления, так и последующей обработки. Точность размеров заготовки является важнейшим фактором, влияющим на стоимость изготовления детали. При этом желательно обеспечить стабильность размеров заготовки во времени и в пределах изготавливаемой партии. Форма и размеры заготовки, а также состояние ее поверхностей (например, отбел чугунных отливок, слой окалины на поковках) могут существенно влиять на последующую обработку резанием. Поэтому для большинства заготовок необходима предварительная подготовка, заключающаяся в том,. что им придается такое состояние или вид, при котором можно производить механическую обработку на металлорежущих станках. Особенно тщательно эта работа выполняется, если дальнейшая обработка осуществляется на автоматических линиях или гибких" автоматизированных комплексах. К операциям предварительной обработки относят зачистку, правку, обдирку, разрезание, центро-вание, а иногда и обработку технологических баз.

Припуски, напуски и размеры

Припуск на механическую обработку-это слой металла, удаляемый с поверхности заготовки с целью получения требуемых по чертежу формы и размеров детали. Припуски назначают только на те поверхности, требуемые форма и точность размеров которых не могут быть достигнуты принятым способом получения заготовки.

Припуски делят на общие и операционные. Общий припуск на обработку-это слой металла, необходимый для выполнения всех необходимых технологических операций, совершаемых над данной поверхностью. Операционный припуск - это слой металла, удаляемый при выполнении одной технологической операции. Припуск измеряется по нормали к рассматриваемой поверхности. Общий припуск равен сумме операционных.

Размер припуска существенно влияет на себестоимость изготовления детали. Завышенный припуск увеличивает затраты труда, расход материала, режущего инструмента и электроэнергии. Заниженный припуск требует применения более дорогостоящих способов получения заготовки, усложняет установку заготовки на станке, требует более высокой квалификации рабочего. Кроме того, он часто является причиной появления брака при механической обработке. Поэтому назначаемый припуск должен быть оптималь-1 ным для данных условий производства.

Оптимальный припуск зависит от материала, разм&ров и конфигурации заготовки, вида заготовки, деформации заготовки при ее изготовлении, толщины дефектного поверхностного слоя и других факторов. Известно, например, что чугунные отливки имеют» дефектный поверхностный слой, содержащий раковины, песчаные включения; поковки, полученные ковкой, имеют окалину; поковки, полученные горячей штамповкой, имеют обезуглероженный поверхностный слой.

Оптимальный припуск может быть определен расчетно-аналитическим методом, который рассматривается в курсе «Технология машиностроения». В отдельных случаях (например, когда еще не разработана технология механической обработки) припуски на обработку различных видов заготовок выбирают по стандартам и справочникам.

Действительный слой металла, снимаемый на первой операции может колебаться в широких пределах, т.к. помимо операционного припуска часто приходится удалять напуск.

Напуск - это избыток металла на поверхности заготовки (сверх припуска), обусловленный технологическими требованиями упростить конфигурацию заготовки для облегчения условий ее получен ния. В большинстве случаев напуск удаляется механической обработкой, реже остается в изделии (штамповочные уклоны, увеличенные радиусы закруглений и др.).

В процессе превращения заготовки в готовую деталь ее размеры приобретают ряд промежуточных значений, которые называются операционными размерами. На рис.2.1. на деталях различных классов показаны припуски, напуски и операционные размеры. Операционные размеры обычно проставляют с отклонениями: для валов - в минус, для отверстий - в плюс.



Выбор способа получения заготовок

Технологические возможности основных способов получения заготовок

Основные способы производства заготовок - литье, обработка давлением, сварка. Способ получения той или иной заготовки зависит от служебного назначения детали и требований, предъявляемых к ней, от ее конфигурации и размеров, вида конструкционного материала, типа производства и других факторов.

Литьем получают заготовки практически любых размеров как простой, так и очень сложной конфигурации. При этом отливки могут иметь сложные внутренние полости с криволинейными поверхностями, пересекающимися под различными углами. Точность размеров и качество поверхности зависят от способа литья. Некоторыми специальными способами литья (литье под давлением, по выплавляемым моделям) можно получить заготовки, требующие минимальной механической обработки.

Отливки можно изготавливать практически из всех металлов и. сплавов. Механические свойства отливки в значительной степени зависят от условий кристаллизации металла в форме. В некоторых случаях внутри стенок возможно образование дефектов (усадочные рыхлоты, пористость, горячие и холодные трещины), которые обнаруживаются только после черновой механической обработки при снятии литейной корки. .

Обработкой металлов давлением получают машиностроительные профили, кованые и штампованные заготовки.

Машиностроительные профили изготавливают прокаткой, прессованием, волочением. Эти. методы позволяют получить заготовки, близкие к готовой детали по поперечному сечению (круглый, шестигранный, квадратный прокат; сварные и бесшовные трубы). Прокат выпускают горячекатаный и калиброванный. Профиль, необходимый для изготовления заготовки, можно прокалибровать волочением. При изготовлении деталей из калиброванных профилей возможна обработка без применения лезвийного инструмента.

Ковка применяется для изготовления заготовок в единичном производстве. При производстве очень крупных и уникальных заготовок (массой до 200...300 т) ковка - единственный возможный способ обработки давлением. Штамповка позволяет получить заготовки, более близкие по конфигурации к готовой детали (массой до 350...500 кг). Внутренние полости поковок имеют более простую конфигурацию, чем отливок, и располагаются только вдоль направления движения рабочего органа молота (пресса). Точность и качество заготовок, полученных холодной штамповкой, не уступают точности и качеству отливок, полученных специальными методами литья.

Обработкой давлением получают заготовки из достаточно пластичных металлов. Механические свойства таких заготовок всегда выше, чем литых. Обработка давлением создает волокнистую макроструктуру металла, которую нужно учитывать при разработке конструкции и технологии изготовления заготовки. Например,. в зубчатом колесе, изготовленном из проката (рис.3.1, а), направление волокон не способствует повышению прочности зубьев. При изготовлении заготовки штамповкой из полосы (рис.3.1,6) или осадкой из прутка (рис.3.1, в) можно получить более благоприятное расположение волокон.

Сварные заготовки изготавливают различными способами сварки-от электродуговой до электрошлаковой. В ряде случаев.сварка упрощает изготовление заготовки, особенно сложной конфигурации. Слабым местом сварной заготовки является сварной шов или околошовная зона. Как правило, их прочность ниже, чем основного металла. Кроме того, неправильная конструкция заготовки или технология сварки могут привести к дефектам (коробление, пористость, внутренние напряжения), которые трудно исправить механической обработкой.

Комбинированные заготовки сложной конфигурации дают значительный экономический эффект при изготовлении элементов заготовки штамповкой, литьем, прокаткой с последующим соединением их сваркой. Комбинированные заготовки применяют при изготовлении крупных коленчатых валов, станин кузнечно-прессового оборудования, рам строительных машин и т.д.

Перспективно в настоящее время получение заготовок из пластмасс и порошковых материалов. Характерной особенностью таких заготовок является то, что они по форме и размерам могут соответствовать форме и размерам готовых деталей и требуют лишь незначительной, чаще; всего отделочной-обработки.

Основные принципы выбора способа получения заготовок

Одну и ту же деталь можно изготовить из заготовок, полученных различными способами. Одним из основополагающих принципов выбора заготовки является ориентация на такой способ изготовления, который обеспечит ей максимальное приближение к готовой детали. В этом случае существенно сокращается расход металла, объем механической обработки и производственный цикл изготовления детали. Однако при этом в заготовительном производстве увеличиваются расходы на технологическое оборудование и оснастку, их ремонт и обслуживание. Поэтому при выборе способа получения заготовки следует проводить технико-экономический анализ двух этапов производства - заготовительного и механообрабатывающего. Методика технико-экономического анализа приведена в гл.9.

Разработка технологических процессов изготовления заготовок должна осуществляться на основе технического и экономического принципов. В соответствии с техническим принципом выбранный технологический процесс должен полностью обеспечить выполнение всех требований чертежа и технических условий на заготовку;

В соответствии с экономическим принципом изготовление заготовки должно вестись с минимальными производственными затратами.

Из нескольких возможных вариантов технологического процесса при прочих равных условиях выбирают наиболее экономичный, при равной экономичности - наиболее производительный. Если ставятся специальные задачи, например срочный выпуск какой-нибудь важной продукции, решающими могут оказаться другие факторы (более высокая производительность, минимальное время подготовки производства и др.).


Факторы, определяющие выбор способа получения заготовок

Форма и размеры заготовки

Наиболее сложные по конфигурации заготовки можно изготавливать различными способами литья. Литье в песчаные формы и по выплавляемым моделям позволяют получать заготовки сложной формы с различными полостями и отверстиями. В то же время некоторые способы литья (например, литье под давлением) выдвигают определенные ограничения к форме отливки и условиям ее изготовления. .

Заготовки, получаемые штамповкой, должны быть более простыми по форме. Изготовление отверстий и полостей штамповкой в ряде случаев затруднено, а использование напусков резко увеличивает объем последующей механической обработки.

Для простых по конфигурации деталей часто заготовкой является; прокат - (прутки, трубы и т.п.). Хотя в этом случае объем механической обработки возрастает, такая заготовка может быть достаточно экономичной из-за низкой стоимости проката, почти полного отсутствия подготовительных операций и возможности автоматизации процесса обработки.

Для литья и ковки размеры заготовки практически не ограничиваются. Нередко - ограничивающим параметром в этом случае являются определенные минимальные размеры (например, минимальная толщина стенки отливки, минимальная масса поковки). Штамповка и большинство специальных методов литья ограничивают массу заготовки до нескольких десятков или сотен килограммов.

Форма (группа сложности) и размеры (масса) отливок и поковок влияют на их себестоимость. Причем масса заготовки влияет активнее, так как с ней связаны расходы на оборудование, оснастку, нагрев и т.п. Значительное снижение стоимости изготовления литых и штампованных заготовок происходит при увеличении их массы от 2 до 30 кг.

Требуемые точность и качество поверхностного слоя заготовок

Требуемая точность геометрических форм и размеров заготовок существенно влияет на их себестоимость. Чем выше требования к точности отливок, штамповок и других заготовок, тем выше стоимость их изготовления. Это определяется главным образом увеличением стоимости формообразующей оснастки (модели, штампы, пресс-формы), уменьшением допуска на ее износ, применением оборудования с более высокими параметрами точности (и, следовательно, более дорогого), увеличением расходов на его содержание и эксплуатацию. В оптовых ценах на заготовки это удорожание выражается в виде надбавок к базовой цене. Размеры надбавок составляют для отливок 3...6%, для штамповок - 5...15%.

Качество поверхностного слоя заготовки сказывается на возможности ее последующей обработки и на эксплуатационных свойствах детали (например, усталостная прочность, износостойкость). Оно формируется практически на всех стадиях изготовления заготовки. Технологический процесс определяет не только микрогеометрию поверхности, но и физико-механические свойства поверхностного слоя.

В качестве примера сравним заготовки, полученные литьем в песчаные формы и под давлением. В первом случае получают грубую неточную поверхность. При обработке такой заготовки резанием возникает неравномерная нагрузка на резец, что в свою очередь снижает точность обработки. Особенно ярко это проявляется при обработке внутренних поверхностей.

Во втором случае поверхность заготовки имеет низкую высоту микронеровностей, но в связи с высокой скоростью охлаждения и отсутствием податливости формы в поверхностном слое металла создаются остаточные напряжения растяжения. Последние могут привести к короблению отливки и трещинам. Иногда остаточные напряжения выявляются не сразу, а при последующей механической обработке. Съем слоя металла с поверхности нарушает равновесие напряжений и приводит к деформации готовой детали.

Технологические свойства материала заготовки

Каждый способ производства заготовок требует от материала определенного комплекса технологических свойств. Поэтому часто материал накладывает ограничения на выбор способа получения заготовки. Так, серый чугун имеет прекрасные литейные свойства, но не куется. Титановые сплавы обладают высокими антикоррозионными свойствами, но получить из них отливки или поковки весьма затруднительно.

Технологические свойства оказывают влияние на себестоимость изготовления заготовок. Например, переход при изготовлении отливки от чугуна к стали повышает себестоимость литья (без учета стоимости материала) на 20...30%. Применение легированных и высокоуглеродистых сталей при производстве заготовок штамповкой повышает стоимость их изготовления на 5...7%.

Если заготовки из одного и того же материала получать различными Способами (литье, обработка давлением, сварка), то они будут обладать неидентичными свойствами, т.к в процессе изготовления заготовки происходит изменение свойств материала. Так, литой металл характеризуется относительно большим размером зерен, неоднородностью химического состава и механических свойств по сечению отливки, наличием остаточных напряжений и т.д. Металл после обработки давлением имеет мелкозернистую структуру, определенную направленность расположения зерен (волокнистость). После холодной обработки давлением возникает наклеп. Холоднокатаный металл прочнее литого в 1,5...3,0 раза. Пластическая деформация металла приводит к анизотропии свойств: прочность вдоль волокон примерно на 10...15% выцГе, чем в поперечном направлении.

Сварка ведет к созданию неоднородных структур в самом сварном шве и в околошовной зоне. Неоднородность зависит от способа и режима сварки. Наиболее резкие отличия в свойствах сварного шва получают при ручной дуговой сварке. Электрошлаковая и автоматическая дуговая сварки дают наиболее качественный и однородный шов.


Программа выпуска продукции

Программа выпуска продукции, т.е. количество изделий, выпускаемых в течение определенного периода времени (обычно за год), является одним из важнейших факторов, определяющих выбор способа производства заготовок. Ее влияние для каждого технологического процесса легко проследить по себестоимости одной заготовки:

Сзаг=й+6/П (3.1)

или производственной партии:

С==аП+Ь,

где а - текущие затраты (стоимость расходуемого материала, заработная плата основных рабочих, расходы на эксплуатацию оборудования и инструмента и т.д.); Ь - единовременные затраты (на оборудование, инструмент, его амортизацию и ремонт); П - размер производственной партии, шт.

Очевидно, что увеличение размера партии ведет к уменьшению себестоимости заготовки. Однако такое снижение себестоимости происходит не однозначно. При увеличении производственной партии свыше значения П, - требуется введение дополнительного оборудования, технологической оснастки. Зависимость себестоимости от размеров партии приобретает в этом случае более сложный (ступенчатый) характер (рис.3.2).

Сравнение двух (или нескольких) вариантов технологических процессов изготовления заготовок можно осуществить графически (рис.3.3). Точка пересечения дает критическую производственную партию Пк, которая разделяет области рационального применения того или иного технологического процесса.

Программа выпуска позволяет также определить экономически целесообразные пределы применения различных методов получения заготовок (рис.3.4).

Рис.3.2. Зависимость себестоимости С партии заготовок (1) и одной заготовки (2) от размера производственной партии П:

П1, П2 - критические значения размеров партии

Рис.3.3. Сравнение себестоимости С технологических про-цессов изготовления заготовки (варианты 1 и 2) в зависимости от размера производ-ственной партии

Рис.3.4. Поводок (а) и зависимость себестоимости заготовки от метода ее изготовления и размера производственной партии (б)

Производственные возможности предприятия

При организации производства нового вида заготовок, кроме разработки технологических процессов, следует установить необходимость нового оборудования, производственных площадей, кооперативных связей, "постановки дополнительных материалов, электроэнергии, воды и т. п: В этом случае выбор оборудования, оснастки и материалов производится на основании предварительного технико-экономического анализа.

При проектировании технологического процесса для действующего предприятия его следует связать с возможностями этого предприятия. Для этого необходимо располагать сведениями о типе и количестве имеющегося оборудования, производственных площадях, возможностях ремонтной базы, вспомогательных служб и т.д.

Многие из упомянутых выше факторов взаимосвязаны. Например, внедрение литья в металлические формы (кокиль) позволяет значительно снизить потребность в производственных площадях в литейном цехе (уменьшаются габаритные размеры машин, снижается расход формовочных материалов и т.п.). Но, с другой стороны, изготовление и ремонт кокилей требует дополнительных затрат в Инструментальных и ремонтных цехах.

Определенное влияние на выбор способа изготовления заготовки оказывают также наличие и уровень квалификации рабочих и ИТР на предприятии. Чем ниже квалификация рабочих и больше производственная программа, тем детальнее необходимо разрабатывать технологическую документацию, тем больше нагрузка на технологические службы предприятия и выше требования к квалификации ИТР.


Длительность технологической подготовки производства

B процессе технологической подготовки производства решаются задачи: технологического проектирования - разработка технологических процессов, маршрутных карт и т.п.; нормирования-расчеты трудоемкости операций и материалоемкости деталей; конструирования и производства основного и вспомогательного оборудования и технологической оснастки.

Сложность периода технологической подготовки производства состоит в том, что все работы должны вестись в кратчайшие сроки с минимальной трудоемкостью и стоимостью. Удлинение периода подготовки производства может привести к моральному устареванию изделия, снижению фондоотдачи капиталовложений и т.д. Поэтому начинать подготовку желательно еще во время проектирования изделия.

Длительность и объем технологической подготовки производства определяется сложностью изготавливаемого изделия, характером применяемых технологических процессов и типом производства. Чем больше количество и сложность используемого оборудования, тем больше объем и длительность подготовки. В условиях массового и серийного производства технологическая подготовка ведется особенно подробно. В единичном производстве технологическая подготовка ограничивается разработкой минимальных данных, необходимых для производства. Их детализация возлагается на цеховые технологические службы. В некоторых случаях (например, для устранения «узких» мест производства) с целью сокращения периода подготовки выбирают такой метод производства заготовок, который требует минимальных затрат на производство оборудования, инструментов и оснастки, необходимых для осуществления данного технологического процесса.



Методика выбора способа получения заготовок

На первом этапе тщательно анализируются детальные и сборочные чертежи изделия, взаимосвязи элементов конструкции при сборке, эксплуатации и ремонте. Анализ сопровождается критической оценкой чертежей с точки зрения технологичности и обоснованности технических требований. Все выявленные недостатки исправляются совместно с разработчиком конструкции.

Затем, исходя из заданной программы выпуска продукции, конфигурации и размеров основных деталей и узлов, а также производственных возможностей предприятия, устанавливается тип и характер будущего производственного процесса (единичное, серийное, или массовое; групповое или поточное).

В соответствии с конструкцией детали и предъявляемыми техническими требованиями устанавливают основные факторы (см. п.3.3), определяющие выбор вида заготовки и технологии ее изготовления. Факторы желательно располагать в порядке убывания их значимости.

Анализируя степень влияния рассмотренных выше факторов, выбирают один или несколько технологических процессов, обеспечивающих получение заготовок требуемого качества. Одновременно проверяют возможность использования комбинированных заготовок. На предварительном этапе выбора оптимального способа получения заготовок можно воспользоваться так называемой матрицей влияния факторов (табл.3.1). Оценка каждого фактора в ней производится «плюс - минус» или с помощью коэффициента удельного веса (от 0 до 1). Лучшим считается способ, набравший большее число плюсов или большую сумму коэффициентов.

После выбора нескольких вариантов получения заготовок для каждого из них конкретизируют: последовательность выполняемых операций (например, штамповка на прессе, затем на ГКМ; вальцовка, затем штамповка и сварка), используемое оборудование, основные и вспомогательные материалы. Если ни у одного из отобранных, способов получения заготовок нет определенных преимуществ, укрупненно проектируют несколько наиболее приемлемых заготовок и технологических процессов их производства.

3.1. Образец оформления матрицы влияния факторов

Для разработанных технологических процессов определяют основные технико-экономические показатели и на основании их анализа выбирают наиболее рациональный. Затем для выбранного способа производства разрабатывается подробный технологический процесс и делается его технико-экономический анализ.


Норма расхода металла и масса заготовки

Норму расхода материала, кг, на единицу, продукции можно выразить такой формулой:

Н == Сд + Ст. о + Сз. о, (3.3)

где Сд-масса готовой детали; Ст. о-масса технологического отхода; Gз. o-масса заготовительного отхода.

Массу готовой детали <3д можно рассчитать по формулам на основании данных чертежа или непосредственного обмера, а в случае особо сложной конфигурации детали - контрольным взвешиванием образца.

Масса технологического отхода Gт. о, м представляет собой неизбежные для данного производства потери материала, которые можно рассчитать так:

g t. o = От. а. з + бт.п. м, (3.4 )

где бт.п. з-технологические потери материала на угар, облой, прибыли, литниковую, систему; (Зт.п. м-технологические потери материала в виде припусков и напусков. Технологический отход находится в прямой зависимости от типа производства.

Масса заготовительного отхода Сз. о непосредственно с процессом изготовления детали не связана. Она определяется условиями поставки металла или материала. Например, отход прутка из-за некратности его длины длине заготовки, полосовой отход при холодной вырубке деталей из листа и т.д.

Масса технологического и заготовительного отходов уменьшается по мере совершенствования технологических процессов и применения прогрессивных методов обработки. При любом типе производства необходимо стремиться к снижению норм расхода материала за счет уменьшения технологического и заготовительного.отходов. Особенно актуальна эта задача в условиях массового производства. Именно в массовом производстве родились безотходные методы производства изделий (например, производство болтов и винтов из прутка методом холодной высадки).

Масса, с которой заготовка поступает на предварительную механическую обработку, называется массой заготовки. Масса заготовки, кг

Gs =s Од +, Ст.п. м.


Требования к заготовкам с точки зрения последующей обработки

Помимо минимальной, металлоемкости и трудоемкости к заготовкам предъявляют ряд требований с точки зрения их последующей механической обработки. К числу таких требований относятся: минимальные припуски на обработку; рациональное расположение литейных и штамповочных уклонов; повышенная точность размеров; минимизация или полное устранение дефектных слоев и др.

Минимизация припусков уменьшает количество проходов и переходов механической обработки и тем снижает ее стоимость.

Штамповочные и литейные уклоны ограничивают возможность использования отдельных поверхностей заготовки в качестве технологических баз при механической обработке, снижают точность обработки. Соответствующим выбором способа получения заготовки конструктор может создать наиболее приемлемую ее форму, позволяющую осуществить механическую, обработку с наименьшими трудозатратами. Основным требованием здесь является такое расположение плоскости разъема штампа или литейной формы, при котором установочные поверхности заготовки будут лишены уклонов и следов разъема.

Точность размеров заготовок, получаемых различными способами, колеблется от сотых долей до нескольких десятков миллиметров. Естественно при этом стремление получить точность заготовки максимально приближенной к требованиям чертежа готовой детали. В этом-случае иногда удается обойтись без механической обработки. Особенно возрастают требования к точности заготовок и стабильности размеров при обработке их на прутковых автоматах, станках типа «обрабатывающий центр», в гибких производственных системах, робототёхнических комплексах и пр. Низкая точность заготовок в автоматизированном производстве часто является причиной отказа сложных систем и линий. Поэтому точность заготовок перед запуском их на обработку в автоматизированном производстве часто приходится повышать путем предварительной обработки базовых поверхностей.

Наличие дефектного слоя на поверхности, подлежащей механической обработке, с одной стороны, приводит к увеличению припусков, с другой - к снижению стойкости режущего инструмента. Дефектный слой у чугунных отливок, получаемых в песчаных формах по деревянным моделям, составляет 1...5 мм, у поковок - 1,5...3 мм, у штампованных поковок-0,5,. .1,5, у горячекатаного проката - 0,5...1,0 мм. Без учета влияния вышеперечисленных факторов на последующую механическую обработку невозможно квалифицированно выбрать способ получения заготовки.


Влияние точности и качества поверхностного слоя заготовки на структуру ее механической обработки

Поверхности деталей делятся на обрабатываемые и необрабатываемые. В этой связи все детали в машиностроении можно разделить на три группы. К первой группе относятся детали, точность "и качество поверхностного слоя которых могут быть обеспечены тем или иным способом получения заготовки без какой-либо механической обработки. Типичными представителями таких деталей являются детали, получаемые холодной штамповкой из пластмасс, металлических порошков черных и цветных металлов, а также (реже) прецизионными способами литья и горячей штамповки. Вторая группа-летал», у которых все поверхности должны быть обработаны механически. Необходимость в механической обработке здесь может быть обусловлена двумя причинами: отсутствием способов получения заготовки, обеспечивающих требуемые по чертежу точность и качество поверхностного слоя, или экономической нецелесообразностью (дороговизной) получения требуемого качества детали имеющимися технологическими способами получения заготовок. Третью группу составляют детали, у которых часть поверхностей не обрабатывается, а наиболее точные, исполнительные и поверхности, подлежат обработке путем снятия стружки. Третья группа наиболее многочисленна и занимает промежуточное положение между первыми двумя. Производство деталей первой группы обходится наиболее дешево. Оно открывает путь к безотходной или, по крайней мере, малоотходной технологии. В стремлении к такому производству проявляется одна из самых важных тенденций развития машиностроения. Однако низкий уровень большинства наиболее распространенных в настоящее время способов получения заготовок вынуждает иметь в структуре любого машиностроительного завода механические цехи, - в которых заготовки превращаются в детали путем снятия с их поверхностей припусков на обработку.

Таким образом, основной тенденцией заготовительного производства является повышение точности и улучшение качества поверхностного слоя заготовок. Однако достижение этих качеств при малой программе выпуска может оказаться экономически невыгодным, так как расходы на оснастку для заготовительных процессов могут превысить экономию на механической обработке.

Рассмотрим сказанное на примере детали (рис.3.5), всем обрабатываемым поверхностям которой присвоены номера. Точность и шероховатость пронумерованных поверхностей различны. Поверхности, 2, 3, 4, 6, 7, 8 и 9 нуждаются в однопереходной обработке (строгании, фрезеровании или точении). Поверхность 1, являющаяся базовой поверхностью, требует применения двухпереходной обработки (чистового и чернового фрезерования).

Литература

1. Обоснование выбора заготовки

Оптимальный метод получения заготовки подбирают в зависимости от ряда факторов: материала детали, технических требований по ее изготовлению, объема и серийности выпуска, формы поверхностей и размеров деталей. Метод получения заготовки, обеспечивающий технологичность и минимальную себестоимость считается оптимальным.

В машиностроении для получения заготовок наиболее широко применяют следующие методы:

обработку металлов давлением;

комбинации этих методов.

Каждый из вышеперечисленных методов содержит большое число способов получения заготовок.

В качестве метода получения заготовки принимаем обработку металла давлением. Выбор обоснован тем, что материалом детали является конструкционная сталь 40Х. Дополнительным фактором, определяющим выбор заготовки, является сложность конфигурации детали и тип производства (условно принимаем что деталь изготавливается в условиях серийного производства. Принимаем штамповку на горизонтально-ковочных машинах.

Данный тип штамповок позволяет получать заготовки минимальной массой 0,1 кг, 17-18 квалитета точности с шероховатостью 160-320 мкм в условиях мелкосерийного производства.

заготовка машиностроение маршрут деталь

2. Разработка маршрута обработки детали

Маршрут обработки детали:

Операция 005. Заготовительная. Штамповка на КГШП.

Заготовительный цех.

Операция 010. Фрезерная.

Сверлильно-фрезерно-расточной станок 2254ВМФ4.

.Фрезеровать плоскость, выдерживая размер 7.

2.Сверлить 2 отверстия D 12,5.

.Зенкеровать отверстие D 26,1.

.Зенкеровать отверстие D32.

.Зенкеровать отверстие D35,6.

.Развернуть отверстие D36.

.Зенковать фаску 0,5 х 450.

Операция 015. Токарная.

Токарно-винторезный 16К20.

.Подрезать торец, выдерживая размер 152.

2.Точить поверхность D37, выдерживая размер 116.

.Точить 2 фаски 2 х 450.

.Нарезать резьбу М30х2.

Операция 020. Фрезерная

Вертикально-фрезерный 6Р11.

.Фрезеровать поверхность, выдерживая размеры 20 и 94.

Операция 025. Вертикально-сверлильная.

Вертикально-сверлильный 2Н125.

Установ 1.

.Сверлить 2 отверстия D9.

2.Сверлиль отверстие D8,5.

.Нарезать резьбу К1/8/.

Установ 2.

.Сверлить отверстие D21.

.Сверлить отверстие D29.

Операция 030 Слесарная.

Притупить острые кромки.

Операция 035. Технический контроль.

3. Выбор технологического оборудования и инструмента

Для изготовления детали "Наконечник" подбираем следующие станки

1.Сверлильно-фрезерно-расточной станок с ЧПУ и инструментальным магазином 2254ВМФ4;

2.Токарно-винторезный станок 16К20;

.Вертикально-фрезерный станок 6Р11;

.Вертикально-сверлильный станок 2Н125.

В качестве станочных приспособлений используем: для токарной-операции - 4-х кулачковый патрон, для остальных операций - специальные приспособления.

При изготовлении данной детали используется следующий режущий инструмент:

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 8,5 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0020 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 9 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0023 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 12,5 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0040 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 21 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0073 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 29 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0100 ГОСТ 10903-77.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 26 мм. длиной 286 мм для обработки сквозного отверстия. Обозначение: 2323-2596 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 32 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0555 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 35,6 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0558 ГОСТ 12489-71.

Развертка машинная цельная с коническим хвостовиком D36 мм. длиной 325 мм. Обозначение: 2363-3502 ГОСТ 1672-82.

Зенковка коническая типа 10, диаметром D = 80 мм. с углом при вершине 90. Обозначение: Зенковка 2353-0126 ГОСТ 14953-80.

Резец правый проходной упорный отогнутый с углом в плане 90o типа 1, сечения 20 х 12. Обозначение: Резец 2101-0565 ГОСТ 18870-73.

Резец токарный резьбовой с пластинкой из быстрорежущей стали для метрической резьбы с шагом 3 типа 1, сечения 20 х 12.

Обозначение: 2660-2503 2 ГОСТ 18876-73.

Метчик машинный 2621-1509 ГОСТ 3266-81.

Для контроля размеров данной детали, применяем следующий мерительный инструмент:

Штангенциркуль ШЦ-I-125-0,1 ГОСТ 166-89;

Штангенциркуль ШЦ-II-400-0,05 ГОСТ 166-89.

Для контроля размера отверстия D36 используем калибр - пробку.

Набор образцов шероховатости 0,2 - 0,8 ШЦВ ГОСТ 9378 - 93.

4. Определение промежуточных припусков, допусков и размеров

4.1 Табличным методом на все поверхности

Необходимые припуски и допуски на обрабатываемые поверхности выбираем по ГОСТ 1855-55.

Припуски на механическую обработку детали "Наконечник"

Размер, мм. Шерохова-тость, мкм. Припуск, мм. Допуск на размер, ммРазмер с учетом припуска, мм. Ra 5Черновая 8 Получистовая 1,5 Чистовая 0,5Rа 6,3Черновая 3,0 Чистовая 3,037Rа 6,33152Rа 6,34,2

4.2 Аналитическим методом на один переход или на одну операцию

Расчет припусков аналитическим методом производим для поверхности Шероховатость Ra5.

Технологический маршрут обработки отверстия состоит из зенкерования, чернового и чистового развертывания

Технологический маршрут обработки отверстия состоит из зенкерования и чернового, чистового развертывания.

Расчет припусков производим по следующей формуле:

где R - высота неровностей профиля на предшествующем переходе;

Глубина дефектного слоя на предшествующем переходе;

Суммарные отклонения расположения поверхности (отклонения от параллельности, перпендикулярности, соосности, симметричности, пересечения осей, позиционное) на предшествующем переходе;

Погрешность установки на выполняемом переходе.

Высоту микронеровностей R и глубину дефектного слоя для каждого перехода находим в таблице методического пособия.

Суммарное значение, характеризующее качество поверхности штампованных заготовок составляет 800 мкм. R= 100 мкм; = 100 мкм; R= 20 мкм; = 20 мкм;

Суммарное значение пространственных отклонений оси обрабатываемого отверстия относительно оси центра определится по формуле:

где - смещение обрабатываемой поверхности относительно поверхности используемой в качестве технологической базы при зенкеровании отверстий, мкм

где - допуск на размер 20 мм. = 1200 мкм.

Допуск на размер 156,2 мм. = 1600 мм.

Величину коробления отверстия следует учитывать как в диаметральном, так и в осевом сечении.

где - величина удельного коробления для поковок. = 0,7, и L - диаметр и длина обрабатываемого отверстия. = 20 мм, L = 156,2 мм.

Величина остаточного пространственного отклонения после зенкерования:

Р2 = 0,05 Р = 0,05 1006 = 50 мкм.

Величина остаточного пространственного отклонения после чернового развертывания:

Р3 = 0,04 Р = 0,005 1006 = 4 мкм.

Величина остаточного пространственного отклонения после чистового развертывания:

Р4 = 0,002 Р = 0,002 1006 = 2 мкм.

При определении погрешности установки δУ на выполняемом переходе при определении промежуточного припуска требуется определить погрешность закрепления (погрешность базирования для тел вращения равна нулю). Погрешность закрепления заготовки при закреплении ее в призматическом зажиме: 150 мкм.

Остаточная погрешность при черновом развертывании:

0,05 ∙ 150 = 7 мкм.

Остаточная погрешность при чистовом развертывании:

0,04 ∙ 150 = 6 мкм.

Производим расчет минимальных значений межоперационных припусков: зенкерование.

Черновое развертывание:

Чистовое развертывание:

Наибольший предельный размер по переходам определяем последовательным вычитанием от чертежного размера минимального припуска каждого технологического перехода.

Наибольший диаметр детали: dР4 = 36,25 мм.

Для чистового развертывания: dР3 = 36,25 - 0,094 =36,156 мм.

Для чернового развертывания: dР2 = 35,156 - 0,501 = 35,655 мм.

Для зенкерования:

Значения допусков каждого технологического перехода и заготовки принимаем по таблицам в соответствии с квалитетом, используемого метода обработки.

Квалитет после чистового развертывания: ;

Квалитет после чернового развертывания: H12;

Квалитет после зенкерования: H14;

Квалитет заготовки: .

Наименьшие предельные размеры определяем вычетанием допусков от наибольших предельных размеров:

MIN4= 36,25 - 0,023 = 36,02 мм.MIN3 = 36,156 - 0,25 = 35,906 мм.MIN2 = 35,655 - 0,62 = 35,035 мм.MIN1 = 32,025 - 1,2 = 30,825 мм.

Максимальные предельные значения припусков ZПР. МАХ равны разности наименьших предельных размеров. А минимальные значения ZПР. МIN соответственно разности наибольших предельных размеров предшествующего и выполняемого переходов.

ПР. МIN3 = 35,655 - 32,025 = 3,63 мм.ПР. МIN2 = 36,156 - 35,655 = 0,501 мм.ПР. МIN1 = 36,25 - 36,156 = 0,094 мм.ПР. МAX3 = 35,035 - 30,825 = 4,21 мм.ПР. МAX2 = 35,906 - 35,035 = 0,871 мм.ПР. МAX1 = 36,02 - 35,906 = 0,114 мм.

Общие припуски ZО. МАХ и ZО. МIN определяем, суммируя промежуточные припуски.

О. МAX = 4,21 + 0,871 + 0,114 = 5, 195 мм.О. МIN = 3,63 + 0,501 + 0,094 = 4,221 мм.

Полученные данные сводим в результирующую таблицу.

Технологические переходы обработки поверхности Элементы припуска

Расчетный припуск , мкм. Допуск δ, мкмПредельный размер, мм. Предельные значения припусков, мкмRZhPЗаготовка8001006150120030,82532,025Зенкерование1001005072 ∙ 166562035,03535,65536304210Развертывание черновое2020462 ∙ 25025035,90636,156501871Развертывание чистовое2 ∙ 470,2336,0236,2594114Итого42255195

Окончательно получаем размеры:

Заготовки: dЗАГ. =;

После зенкерования: d2 = 35,035+0,62 мм.

После чернового развертывания: d3 = 35,906+0,25 мм.

После чистового развертывания: d4 = мм.

Диаметры режущих инструментов отображены в пункте 3.

5. Назначение режимов резания

5.1 Назначение режимов резания аналитическим методом на одну операцию

Фрезерная операция. Фрезеровать плоскость, выдерживая размер 7 мм.

а) Глубина резания. При фрезеровании торцевой фрезой глубина резания определяется в направлении параллельном оси фрезы и равна припуску на обработку. t =2,1 мм.

б) Ширина фрезерования определяется в направлении, перпендикулярном к оси фрезы. В = 68 мм.

в) Подача. При фрезеровании различают подачу на зуб, подачу на один оборот и подачу минутную.

где n - частота вращения фрезы, об/мин;- число зубьев фрезы.

При мощности станка N = 6,3 кВт S = 0,14.0,28 мм/зуб.

Принимаем S = 0,18 мм/зуб.

мм/об.

в) Скорость резания.

Где Т - период стойкости. В данном случае Т = 180 мин. - общий поправочный коэффициент

Коэффициент учитывающий обрабатываемый материал.

nV (8) НВ = 170; nV = 1,25 (1; с.262; табл.2)

1,25 =1,15

Коэффициент, учитывающий материал инструмента; = 1

(1; с.263; табл.5)

Коэффициент, учитывающий состояние поверхности заготовки; = 0,8 (1; с.263; табл.6)

V = 445; Q = 0,2; х = 0,15; y = 0,35; u = 0,2; P = 0; m = 0,32 (1; с.288; табл.39)

м/мин.

г) Частота вращения шпинделя.

(9) n об/мин.

Корректируем по паспорту станка: n = 400 об/мин.

мм/мин.

д) Фактическая скорость резания

м/мин.

е) Окружная сила.

где n = 0,3 (1; с.264; табл.) 0,3 = 0,97

СP =54,5; Х = 0,9; Y = 0,74; U = 1; Q = 1; W = 0.

5.2 Табличным методом на остальные операции

Назначение режимов резания табличным методом произоводится согласно справочнику режимов резания металлов. Полученные данные вносим в результирующую таблицу.

Режимы резания на все поверхности.

Наименование операции и переходаГабаритный размерГлубина резания, мм. Подача, мм/об. (мм/мин) Скорость резания, м/минЧастота вращения шпинделя, об/мин. D (B) LОперация 010 Фрезерная1. Фрезеровать поверхность, выдерживая размер 7 92502,11,44125,64002. Сверлить 2 отверстия 12,512,576,250,0815,74003. Зенкеровать отверстие 26,1. 26,11523,050,0820,492504. Зенкеровать отверстие 32. 321122,950,0825,122505. Зенкеровать отверстие 35,635,6921,80,0817,891606. Развернуть отверстие D3636920,020,0518,081607. Зенковать фаску 0,5 х 45o370,50, 250,129,05250Операция 015 Токарная1. Подрезать торец, выдерживая размер 15240-2,10,390,437202. Точить поверхность D37, выдерживая размер 11637361,50,255,84803. Нарезать резьбу М30х230402215,07160Операция 020 ФрезернаяФрезеровать поверхность, выдерживая размеры 20 и 94222021,44125,6400Операция 025 Вертикально-сверлильная1. Сверлить 2 отверстия 995,54,50,0811,34002. Сверлить отверстие 8,58,534,250,0810,74003. Сверлить отверстие 2121410,50,0410,551604. Сверлить отверстие 2929414,50,0414,6160

6. Компоновка станочного приспособления на одну из операций механической обработки

Проектируем станочное приспособление для вертикально-сверлильного и вертикально-фрезерных станков.

Приспособление представляет собой плиту (поз 1.) на которую с помощью штифтов (поз.8) и винтов (поз.7) монтируются 2 призмы (поз.10). Со стороны одной из призм расположен упор (поз.3) с расположенным в нем пальцем, служащим для базирования заготовки. Прижим детали обеспечивается за счет планки (поз 3), которая одним краем свободно вращается вокруг винта (поз.5), а в другой ее край, имеющий форму прорези, входит винт с последующим прижимом гайкой (поз.12).

Для фиксации приспособления на столе станка в теле плиты выполнены проушены и вмонтированы 2 шпонки (поз.13), служащие для центрования приспособления. Транспортировка осуществляется в ручную.

7. Расчет приспособления на точность механической обработки

При расчете точности приспособления необходимо определить допускаемую величину погрешности ε пр, для чего определяем все составляющие погрешности. (в качестве координирующего размера принимаем D29+0.28)

В общем случае погрешнось определяется по формуле:

где - допуск на координирующий размер. В данном случае Т = 0,28 мм;

Коэффициент, учитывающий долю погрешности обработки в суммарной погрешности, вызываемой факторами, не зависящими от приспособления: = 0,3…0,5; принимаем = 0,3;

Остальные значения формулы представляют собой совокупность погрешностей, определяемых ниже.

Погрешность базирования e б возникает при несовпадении измерительной и технологической баз. При обработке отверстия погрешность базирования равна нулю.

Погрешность закрепления заготовки εз возникает в результате действия сил зажима. Погрешность закрепления при использовании ручных винтовых зажимов равна 25 мкм.

Погрешность установки приспособления на станке зависит от зазоров между присоединительными элементами приспособления и станка, а также от неточности изготовления присоединительных элементов. Она равна зазору между Т-образным пазом стола и установочным элементом. В используемом приспособлении размер ширины паза равна 18H7 мм. Размер установочной шпонки 18h6. Предельные отклонения размеров и. Максимальный зазор и соответственно максимальная погрешность установки приспособления на станке = 0,029 мм.

Погрешность износа - погрешность, вызванная износом установочных элементов приспособлений, характеризующее отклонение заготовки от требуемого положения вследствие износа установочных элементов в направлении выполняемых размеров.

Приближенно износ установочных элементов может определяться по следующей формуле:

где U 0 - средний износ установочных элементов для чугунной заготовки при усилии зажима W = 10 кН и базовом числе установок N = 100000;

k 1, k 2, k 3, k 4 - коэффициенты, учитывающие соответственно влияние на износ материала заготовки, оборудования, условий обработки и числа установок заготовки, отличающиеся от принятых при определении U 0.

При установке на опорные гладкие пластины U 0 = 40 мкм.

k 1 = 0,95 (сталь незакаленная); k 2 = 1,25 (специальное); k 3 = 0,95 (лезвийная обработка стали с охлаждением); k 4 = 1,3 (до 40000 установок)

Геометрическая погрешность станка ε ст после чистовой обработке равна 10 мкм.

Погрешность настройки станка на размер ε н. ст зависит от типа обработки и выдерживаемого размера. В данном случае ε н. ст =10 мкм.

Определяем погрешность приспособления:

Суммарная погрешность обработки заготовки по координирующему размеру с использованием приспособления не должна превышать величину допуска Т на него, указанному в чертеже. Приведенное условие имеет вид:

где - статические погрешности, связанные с приспособлением, а также погрешности, в явном виде влияющие на точность изготовления приспособления.

Погрешности, зависящие от технологического процесса и в явном виде на точность изготовления приспособления не влияющие.

Значения погрешностей первой группы найдены выше.

Суммарная погрешность обработки, не зависящая от приспособления определяется как часть допуска на координирующий размер:

мкм. - Условие выполняется.

Литература

1. Справочник технолога машиностроения; - М.: "Машиностроение" под редакцией А.Г. Косиловой, Р.К. Мещеряков; 2 тома; 2003 г.

Н.А. Нефедов, К.А. Осипов; Сборник задач и примеров по резанию металлов и режущему инструменту; - М.: "Машиностроение"; 1990 г.

Б.А. Кузьмин, Ю.Е. Абраменко, М.А. Кудрявцев, В.Н. Евсеев, В.Н. Кузьминцев; Технология металлов и конструкционные материалы; - М.: "Машиностроение"; 2003 г.

А.Ф. Горбацевич, В.А. Шкред; Курсовое проектирование по технологии машиностроения; - М.: "Машиностроение"; 1995 г.

В.Д. Мягков; Допуски и посадки. Справочник; - М.: "Машиностроение"; 2002 г.

В.И. Яковлева; Общемашиностроительные нормативы режимов резания; 2-е издание; - М.: "Машиностроение"; 2000 г.

В.М. Виноградов; Технология машиностроения: введение в специальность; - М.: "Академия"; 2006 г.;

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Р.К.

Семипалатинский Государственный Электротехнический колледж

Тема: Виды заготовок в машиностроении

Преподаватель: Ойшиева Г.С.

Студент: Тайшыбаев Ч.Б.

г.Семей-2015

Под заготовкой понимается изделие, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь. Для получения детали из заготовки ее подвергают механической обработке, в результате которой удалением слоя материала с отдельных (или всех) ее поверхностей получают заданные конструктором на чертеже геометрическую форму, размер и свойства поверхностей детали. Удаляемый слой материала называется припуском. Он необходим для надежного обеспечения геометрических характеристик и чистоты рабочих поверхностей детали. Величина припуска зависит от глубины дефектов поверхности и определяется видом и способом получения заготовки, ее массой и габаритами.

Выделяют следующие виды заготовок:

Дефекты, влияющие на прочность и внешний вид заготовки, подлежат исправлению. В технических условиях должны быть указаны вид дефекта, его количественная характеристика и способы исправления (вырубка, заварка, пропитка различными химическими составами, правка).

Заготовительное производство является составной частью любого автотракторного завода, образуя первый технологический передел.

Заготовка каждого вида может быть изготовлена одним или несколькими способами, родственными базовому. Так, например, отливка может быть получена литьем в песчаные или оболочковые формы, в кокиль и т.д.

Заготовка может быть штучной (мерной) или непрерывной, например пруток горячекатаного проката, из которого разрезкой могут быть получены отдельные штучные заготовки.

Заготовки из конструкционной керамики применяют для тепло- напряженных и (или) работающих в агрессивных средах деталей.

Заготовки из проката (получаемые отрезкой);

Заготовки из проката применяют в единичном и серийном производствах. Прокат выбранного профиля резкой превращают в штучные заготовки, из которых последующей механической обработкой изготовляют детали. Совершенство заготовки определяется близостью выбранного профиля проката к поперечному сечению детали (с учетом припусков на обработку).

Заготовки принято различать по виду, отражающему характерные особенности базового технологического метода их изготовления.

Заготовки простой конфигурации (с напусками) дешевле, так как не требуют при изготовлении сложной и дорогой технологической оснастки. Однако такие заготовки требуют последующей трудоемкой обработки и повышенного расхода материала. Очевидно, что для каждого конкретного метода изготовления заготовки существует оптимальная точность и оптимальный объем выпуска.

Заготовки, получаемые методами порошковой металлургии, по форме и размерам могут соответствовать готовым деталям и требуют незначительной, часто только отделочной обработки.

Заготовку перед первой технологической операцией процесса изготовления детали называют исходной.

Кроме припусков при механической обработке удаляются напуски, которые составляют часть объема заготовки, добавляемую иногда для упрощения технологического процесса ее получения.

Литьем получают заготовки фактически любых размеров простой и очень сложной конфигурации почти из всех металлов и сплавов, а также и из других материалов (пластмассы, керамики и т.д.). Качество отливки зависит от условий кристаллизации металла в форме, определяемых способом литья. В некоторых случаях внутри стенок отливок возможно образование дефектов (усадочные рыхлоты, пористость, трещины, получающиеся в горячем или холодном состоянии), которые часто обнаруживаются только после черновой механической обработки.

Обработкой металлов давлением получают кованые и штампованные заготовки, а также машиностроительные профили. Ковка применяется в единичном и мелкосерийном производстве, а также при изготовлении крупных, уникальных заготовок и заготовок с особо высокими требованиями к объемным свойствам материала. Штамповка позволяет получить заготовки близкие по конфигурации к готовой детали. Механические свойства заготовок, полученных обработкой давлением, выше, чем литых. Машиностроительные профили изготовляют прокаткой, прессованием, волочением.

Отмеченные на чертеже заготовки базы для механической обработки должны служить исходными базами при изготовлении и проверке технологической оснастки (моделей и приспособлений), должны быть чистыми и гладкими, без заусенцев, остатков литников, прибылей, выпоров, литейных и штамповочных уклонов.

Поверхности отливок должны быть чистыми и не должны иметь пригаров, спаев, ужимин, плен, намывов и механических повреждений. Заготовка должна быть очищена или обрублена, места подвода литниковой системы, заливы, заусенцы и другие дефекты должны быть зачищены, удалена окалина. Особенно тщательно должны быть очищены полости отливок. Необрабатываемые наружные поверхности заготовок при проверке по линейке не должны иметь отклонений от прямолинейности более заданных. Заготовки, у которых отклонение от прямолинейности оси (кривизна) влияет на качество и точность работы машины, подлежат обязательному естественному или искусственному старению согласно технологическому процессу, обеспечивающему снятие внутренних напряжений, и правке.

Получаемые литьем (отливки);

Получаемые методами порошковой металлургии.

Получаемые обработкой давлением (кованые и штампованные заготовки);

Поступающие на обработку заготовки должны соответствовать утвержденным техническим условиям. Поэтому их подвергают техническому контролю по соответствующей инструкции, устанавливающей метод контроля, периодичность, количество проверяемых заготовок в процентах к выпуску и т.д. Обычно проверяют химический состав, механические свойства материала, структуру, наличие внутренних дефектов, размеры, массу заготовки.

Развитие машиностроения привело к появлению заготовок, получаемых из конструкционной керамики.

Сварные и комбинированные заготовки изготовляют из отдельных составных элементов, соединяемых между собой с помощью различных способов сварки. В комбинированной заготовке, кроме того, каждый составной элемент представляет собой самостоятельную заготовку соответствующего вида (отливка, штамповка и т.д.), изготовленную выбранным способом по самостоятельному технологическому процессу. Сварные и комбинированные заготовки значительно упрощают создание конструкций сложной конфигурации. Неправильная конструкция заготовки или неверная технология сварки могут привести к дефектам (коробление, пористость, внутренние напряжения), которые трудно исправить механической обработкой.

У заготовок сложной конфигурации с отверстиями и внутренними полостями (типа корпусных деталей) в заготовительном цехе проверяют размеры и расположение поверхностей. Для этого заготовку устанавливают на станке, используя ее технологические базы, имитируя схему установки, принятую для первой операции обработки. Отклонения размеров и формы поверхностей должны соответствовать требованиям чертежа заготовки. Заготовки должны быть выполнены из материала, указанного на чертеже, обладать соответствующими ему механическими свойствами, не должны иметь внутренних дефектов (для отливок -- рыхлоты, раковины, посторонние включения; для поковок -- пористость и расслоения, трещины по шлаковым включениям, «шиферный» излом, крупнозернистость, шлаковые включения; для сварных конструкций -- непровар, пористость металла шва, шлаковые включения).

заготовка керамика конструкционный деталь

Размещено на Allbest.ru

...

Подобные документы

    Описание способов получения заготовок класса "вал". Сравнительный анализ конструкции заготовок из сортового проката. Способы получения заготовки методом штамповки. Конструктивные характеристики штампованной заготовки. Припуски на механическую обработку.

    курсовая работа , добавлен 08.02.2016

    Значение припусков на механическую обработку, напусков и операционных размеров заготовок. Методика выбора способа их получения. Основные формы и размеры, а также точность и качество поверхностного слоя. Технологические свойства материала заготовки.

    презентация , добавлен 26.12.2011

    Понятие и виды изделий. Условное изображение опорных точек. Базы в машиностроении и погрешность базирования заготовок. Понятия о служебном назначении изделия, исполнительные и вспомогательные поверхности. Необходимость обработки свободных поверхностей.

    презентация , добавлен 26.10.2013

    Автоматизация расчета припусков на обработку заготовок деталей машин. Величина припусков на обработку для интервалов размеров деталей цилиндрической формы. Методы получения заготовок. Факторы, влияющие на распределение припусков по этапам обработки.

    дипломная работа , добавлен 14.11.2011

    Описание способов получения заготовок класса "вал", сравнительное описание конструкций заготовок: из сортового проката и штампованной, расчет и обоснование экономической эффективности производства. Назначение припусков на механическую обработку.

    курсовая работа , добавлен 14.06.2015

    Характеристика процесса автоматизации расчета припусков на обработку заготовок деталей машин. Определение величины припусков на обработку для различных интервалов размеров заготовок цилиндрической формы, получаемых при помощи литья, штамповки, ковки.

    дипломная работа , добавлен 07.07.2011

    Выбор оптимального метода получения заготовки, обеспечивающего технологичность и минимальную себестоимость. Разработка маршрута обработки детали. Выбор технологического оборудования и инструмента. Определение промежуточных припусков, допусков и размеров.

    курсовая работа , добавлен 26.02.2014

    Работа посвящена технологии изготовления деталей из керамики. Химический анализ и подготовка керамического сырья. Тонкий помол и смешивание компонентов. Способы, которыми осуществляется формование заготовок. Механическая обработка необожженных заготовок.

    реферат , добавлен 18.01.2009

    Назначение и условия работы детали в узле. Выбор оптимального метода получения заготовки. Химический состав и механические свойства стали. Штамповка и термообработка заготовок. Травление стальных поковок. Люминесцентный и магнитный методы контроля.

    контрольная работа , добавлен 11.12.2015

    Назначение и тенденция развития заготовительного производства. Примерная структура производства заготовок в машиностроении. Заготовки и их характеристика. Припуски, напуски и размеры, выбор способа получения. Норма расхода металла и масса заготовки.

Основные виды заготовок: отливки, штамповки, поковки, прокат, заготовки из металлопорошков, пластмасс и штампосварные. Качественные характеристики заготовок в зависимости от метода их получения. Технико-экономические условия выбора заготовок. Влияние конструкции и материала детали на выбор метода получения заготовок. Задачи рационального и экономного использования металлов путем совершенствования конструкций автотракторной техники и повышения точности заготовок. Задачи охраны окружающей среды, условия труда. Безотходная технология

В транспортной промышленности применяются следующие основные заготовки:

а) отливки из чугуна, стали и цветных металлов; б) поковки и штамповки из стали и некоторых цветных металлов; в) прокат из стали и цветных металлов; г) штампо-сварные из стального проката и других металлов; д) штамповки и отливки из пластмасс; е) металлокерамические (порошковая металлургия).

Себестоимость детали складывается из себестоимости заготовки и себестоимости ее обработки, поэтому необходимо процесс изготовления детали рассматривать комплексно, включая процесс получения заготовки и ее обработку. Из многих возможных способов получения заготовки надо выбрать оптимальный для заданных условий производства, обеспечивающий минимальную себестоимость изготовления детали. Например, при массовом производстве деталей экономически оправдывается получение заготовок, наиболее приближающихся по форме и размерам к готовой детали.

Для объективной технологической характеристики заготовки (кроме оценки правильности геометрической формы и размеров, а также физических свойств металла) применяется коэффициент съема металла

где - вес заготовки; - вес детали.

Получение заготовок литьем

Заготовки можно отливать в разовые, полупостоянные и постоянные формы.

Литье в разовые формы. Этот способ применяется при изготовлении заготовок из черных и цветных металлов с любыми размерами и весами. Производится литье в разовые сырые или сухие песчаные формы, в оболочковые (скорлупчатые) формы и по выплавляемым моделям (прецизионное).

Песчаные формы выполняются в опоках или без опок (почвенная формовка). Формы без опок изготовляются ручным способом, а в опоках - ручным и машинным способами.

Сухие (стержневые) формы применяют для получения ответственных отливок сложной конфигурации (цилиндр двигателя, рабочие колеса гидротурбин и т. п.). Форму собирают из стержней по шаблонам и кондукторам; она обеспечивает получение высокой точности заготовки. Заготовки, получаемые литьем в оболочковые формы , изготовленные из песчано-смоляных смесей, имеют более высокие точность размеров и формы и чистоту поверхности по сравнению с отливками, получаемыми при литье в обычные песчаные формы. В оболочковых формах изготовляют отливки из серого, ковкого и сверхпрочного чугуна, стали и цветных сплавов. Этим методом изготовляют обычно сложные и ответственные заготовки деталей весом до 100 кг. Оболочковые формы имеют прочные тонкие стенки толщиной 5-8 мм, состоящие из смеси 92-95% кварцевого песка и 8-5% термореактивной смолы (фенолформальдегидные смолы типа бакелита и др.). Также применяются быстротвердеющие смеси с жидким стеклом, бетонные и др.

Способ отливки в оболочковые формы сокращает потребление литейной земли в 10 раз, повышает производительность труда в 10-15 раз, значительно улучшает условия труда в литейном цехе. Этот способ особенно выгоден для крупносерийного и массового выпуска деталей. Он позволяет получать стальные отливки с толщиной стенок 3 мм, а отливки из алюминиевых сплавов с толщиной стенок 1 мм. Точность отливок соответствует 4-5-му классам точности, а чистота поверхности 3-4-му классам.

Литье по выплавляемым моделям позволяет получить заготовки сложной формы, настолько близкой к готовой детали, что в отдельных случаях частично или полностью исключается механическая обработка. По выплавляемым моделям обычно изготовляют отливки небольшого веса (до 3 кг), хотя в отдельных случаях они могут выполняться и значительно большего веса. Минимальная толщина стенок отливок из чугуна составляет 0,15 мм, а из алюминиевых сплавов - 0,8 мм. Можно отливать заготовки зубчатых колес с зубьями, шлицевые валики со шлицами и т. п. Для получения большей плотности металла в отливке применяют центробежный или центробежно-вакуумный способ заливки. Для увеличения производительности процесса литья целесообразно в одной форме отливать группу заготовок по выплавляемым моделям. При этом получаются отливки с точностью по 4-5-му классам и чистотой поверхности по 3-4-му классам.

Литье в полупостоянные формы. При этом способе формы изготовляют из гипса, цемента, кирпича и камня. Гипсовые формы применяют для изготовления отливок из чугуна и цветных сплавов весом до 1 т. Отливки в гипсовые формы могут иметь толщину стенок 1-1,5 мм, а отливки из алюминиевых сплавов с использованием вакуума - толщину стенок 0,2 мм. Этим способом изготовляют отливки зубчатых колес с формообразованием зубьев, шлицевые валы, лопасти турбин и др. Цементные формы и формы из кирпича в автотракторной промышленности не применяются.

Формы из камня обеспечивают получение чугунных и бронзовых отливок с чистотой поверхности по 6-му классу и не требуют отбела поверхностного слоя. Формы из талькоактинолито-хлоритового сланца применяют вместо металлических кокилей при массовом производстве.

Литье в постоянные формы. Широкое применение имеет литье в металлические формы - кокиль. Этот вид литья позволяет получать отливки с точностью по 4-7-му классам и с чистотой поверхности по 3-4-му классам. В металлические формы можно отливать заготовки из стали, чугуна и цветных сплавов с весом от нескольких граммов до нескольких тонн.

Для повышения стойкости металлических форм их охлаждают водой. Этот метод экономически целесообразно применять при серийном и массовом производстве. Он позволяет повысить производительность труда по сравнению с литьем в песчаные формы в 2 раза и более, уменьшить более чем в 4 раза производственные площади и снизить в 2 раза затраты на формовочные материалы.

Литье под давлением производится в основном в постоянные формы и применяется для изготовления сложных тонкостенных отливок с глубокими плоскостями и сложными пересечениями стенок. Отливки имеют мелкозернистую структуру, что повышает прочность металла в 1,5 раза по сравнению с прочностью отливок, получаемых в песчаных формах.

Себестоимость форм для литья под давлением высокая, поэтому такой способ применяется в крупносерийном и массовом производстве.

Для литья втулок, колец, труб и других деталей вращения применяется центробежное литье на центробежных машинах.

Особенностью этого процесса является образование внутренней полости без применения стержней и возможность получения многослойных отливок. Заливка металла в металлическую изложницу обеспечивает более качественную отливку, чем заливка в футерованную изложницу, но срок службы последней больше из-за меньшего нагрева. Точность стальных и чугунных отливок, полученных центробежным литьем, соответствует 6-8-му классам и чистота поверхности - 3-му классу.

Получение заготовок обработкой давлением

Процессы обработки металла давлением отличаются высокой производительностью, относительно малой трудоемкостью, обеспечивают экономное расходование металла и, как правило, способствуют улучшению механических свойств металла.

Заготовки могут быть получены ковкой, горячей штамповкой, холодной объемной штамповкой и холодной листовой штамповкой.

Свободная ковка. Она производится на ковочных молотах. Для получения фасонных заготовок деталей автомобилей и тракторов, изготовляемых из сортового проката, применяют пневматические или паровоздушные молоты. Свободную ковку целесообразно применять только при единичном производстве. Ковку на молотах также производят в подкладных штампах. Применение подкладных штампов позволяет увеличить производительность ковки в 5-6 раз. Применяется этот вид ковки в мелкосерийном производстве. Перед штамповкой в подкладных штампах заготовке придают свободной ковкой форму, близкую к форме заданной поковки. Допуск на размер штамповок, получаемых в подкладных штампах, примерно в 2-3 раза меньше, чем допуск при свободной ковке. В мелкосерийном производстве применяется ковка на радиально-ковочной машине с программным управлением. Эта машина производит периодическое обжатие и вытягивание по уступам прутковой или трубной заготовки при помощи последовательных и быстрых ударов двумя бойками и более, работающими по заданной программе, заложенной в программное устройство машины. На радиально-ковочной машине можно производить горячую и холодную ковку. Точность размеров при холодной ковке колеблется в пределах от ±0,02 до ±0,2 мм и чистота поверхности соответствует 7-9-му классам, при горячей ковке точность колеблется в пределах от ±0,05 до 0,3 мм и чистота поверхности соответствует 1-3-му классам.

Горячая объемная штамповка. Горячая объемная штамповка может производиться на молотах, горизонтально-ковочных машинах (ГКМ), штамповочных прессах и ковочных вальцах. Штамповка на молотах применяется в серийном и массовом производстве. Заготовка требуемой конфигурации большей частью получается путем последовательной обработки в нескольких ручьях, выполненных в одном штампе.

Штамповкой на ГКМ изготовляют заготовки весом 0,1-100 кг. На ГКМ можно обеспечить высокое качество поковок за счет расположения волокон материала в наиболее выгодном направлении. Простые по форме заготовки при изготовлении на ГКМ можно получать без облоя, а сложные по форме заготовки - с небольшим облоем, не превышающим 1% веса заготовки. На ГКМ можно получать штампованные заготовки со сквозным отверстием и с глубокими глухими отверстиями. Штампованные заготовки можно получить из прутков и труб повышенной точности.

Штамповка на гидравлических, фрикционных и кривошипных прессах в автотракторной промышленности получила широкое применение. Штамповку на гидравлических прессах применяют для получения заготовок из легких и малопластичных сплавов, требующих небольших скоростей деформирования. Малая производительность гидравлических прессов вследствие их тихоходности повышает себестоимость штампованных заготовок по сравнению с себестоимостью штампованных заготовок, получаемых на прессах других типов.

Штамповка на фрикционных прессах применяется в мелкосерийном и серийном производстве для получения заготовок из стали преимущественно в одноручьевых штампах и для резки в двух ручьях и более, а также для точной штамповки сложных заготовок из цветных сплавов.

Наибольшее распространение в транспортной промышленности получила штамповка на кривошипных прессах. На этих прессах производятся почти все виды горячей штамповки заготовок весом до 100 кг. Постоянство режимов деформирования обеспечивает стабильность размеров и механических свойств штампованных заготовок. Производительность фрикционных и кривошипных прессов в 2-3 раза выше производительности молотов. На прессах можно штамповать заготовки выдавливанием (экструдирование), при котором обеспечиваются точная форма, размеры и повышаются механические свойства металла.

Заготовки также можно получать методом вальцовки. Вальцовкой называется процесс обработки металлов давлением, при котором деформирование заготовки происходит во вращающихся секторах-штампах, расположенных на рядках.

Холодная объемная штамповка. Одним из наиболее экономичных технологических процессов получения заготовок крепежных и других видов мелких деталей (винты, болты, ролики, шарики, толкатели клапанов и т. д.) в больших количествах является холодная объемная штамповка (высадка) на специальных холодно-высадочных прессах-автоматах. Производительность автомата - до 400 шт./мин. Исходным полуфабрикатом для изготовления болтов является бунт проволоки диаметром от десятых долей миллиметра до 10-15 мм или калиброванный пруток диаметром более 8 мм.

Холодная листовая штамповка Исходным материалом служат тонкие листы металла и ленты.

Операции холодной штамповки можно разделить на две группы.

  • 1. Разделительные операции, посредством которых одна часть материала полностью или частично отделяется от другой: отрезка, вырубка, пробивка, надрезка, подрезка, обрезка, зачистка и калибровка.
  • 2. Формоизменяющие операции, посредством которых плоская или пространственная заготовка превращается в пространственную деталь заданной формы и размеров: гибка, отбортовка, вытяжка.

Холодное профильное волочение. Холодным волочением получают заготовки с малым поперечным сечением, обычно со сторонами или диаметром не более 25-30 мм. Этим методом получают мелкомодульные зубчатые колеса, храповые колеса, винты и детали любого сложного профиля.

Отклонения размеров поперечного сечения заготовки соответствуют 4-му классу точности, чистота поверхности 6-му классу. При многократном волочении достигается точность формы и размеров в поперечном сечении до 2-го класса и чистота поверхности у 8-го классов. Применение этого метода обеспечивает получение заготовки, механическая обработка которой производится только по ее торцам.

Контрольные вопросы:

  • 1. Какие способы литья существуют?
  • 2. Какие виды заготовок, полученные обработкой давлением, бывают?
  • 3. Для чего необходим коэффициент съема металла?

В современном производстве одним из основных направлений развития технологии механической обработки является использование черновых заготовок с экономичными конструктивными формами, обеспечивающими возможность применения наиболее оптимальных способов их обработки, т. е. обработки с наибольшей производительностью и наименьшими отходами. Это направление требует непрерывного повышения точности заготовок и приближения их конструктивных форм и размеров к готовым деталям, что позволяет соответственно сократить объем обработки резанием, ограничивая ее в ряде случаев чистовыми, отделочными операциями.

Снижение трудоемкости механической обработки заготовок, достигаемое рациональным выбором способа их изготовления, обеспечивает рост производства на тех же производственных площадях без существенного увеличения оборудования и технологической оснастки. Наряду с этим рациональный выбор способов изготовления заготовок применительно к различным производственным условиям определяет степень механизации и автоматизации производства.

Машиностроение является крупнейшим потребителем металла. Так, в прошедшей пятилетке в машиностроении было использовано 40% от общего выпуска металлопроката и свыше 77% от общего выпуска чугуна, стали и цветных металлов, при этом около 53% массы металла отошло в отходы, в том числе и безвозвратные.

Учитывая существенное значение в технологии производства повышения качественных показателей изготовления заготовок, в «Основных направлениях экономического и социального развития СССР на 1981 - 1985 годы и на период до 1990 года», утвержденных на XXVI съезде КПСС, указано на необходимость ускоренного развития специализированных мощностей по производству отливок и штамповок путем реконструкции на новой технической основе действующих и строительства новых литейных и кузнечно-штамповочных заводов и цехов, повышения качества и точности отливок и штамповок за счет внедрения в производство металлосберегающих (безотходных и малоотходных) технологических процессов.

Последовательное использование передовых технологических процессов изготовления заготовок обеспечит необходимую материальную базу для опережающего развития машиностроения, создаст предпосылки для коренного улучшения использования материалов при резком сокращении их потерь и отходов и доведении среднего коэффициента использования металлопередела до 0,59…0,6.

Выбор вида заготовки для дальнейшей механической обработки во многих случаях является одним из весьма важных вопросов разработки процесса изготовления детали. Правильный выбор заготовки - установление ее формы, размеров припусков на обработку, точности размеров (допусков) и твердости материала, т. е. параметров, зависящих от способа ее изготовления, - обычно весьма сильно влияет на число операций или переходов, трудоемкость и в итоге на себестоимость процесса изготовления детали. Вид заготовки в большинстве случаев в значительной степени определяет дальнейший процесс обработки.

Таким образом, разработка процесса изготовления детали может идти по двум принципиальным направлениям:

  • получение заготовки, приближающейся по форме и размерам к готовой детали, когда на заготовительные цехи приходится как бы значительная доля трудоемкости изготовления детали и относительно меньшая доля приходится на механические цехи,
  • получение грубой заготовки с большими припусками, когда на механические цехи приходится основная доля трудоемкости и себестоимости изготовления детали.

В зависимости от типа производства оказывается рациональным то или иное из указанных направлений или какое-либо промежуточное между ними. Первое направление соответствует, как правило, массовому и крупносерийному производству, так как дорогостоящее современное оборудование заготовительных цехов, обеспечивающее высокопроизводительные процессы получения точных заготовок, экономически оправдано лишь при большом объеме выпуска изделий. Второе направление типично для единичного или мелкосерийного производства, когда применение указанного дорогого оборудования в заготовительных цехах неэкономично. Не следует, однако, изложенное понимать так, что в пределах единичного и серийного производства не могут быть достигнуты целесообразные решения об удовлетворительном качестве заготовок. Наоборот, экономически целесообразное для всякого производства качество заготовок может быть всегда заранее предопределено при правильном подходе к их выбору, а, следовательно, и к установлению способа их изготовления.

Основными видами заготовок в зависимости от назначения деталей являются:

  • отливки из черных и цветных металлов;
  • заготовки из металлокерамики;
  • кованые и штампованные заготовки;
  • заготовки, штампованные из листового металла;
  • заготовки из проката; сварные заготовки;

Отливки из черных и цветных металлов (рис. 36) выполняют различными способами. Для заготовок простых форм с плоской поверхностью в условиях единичного и мелкосерийного производства применяют литье в открытые земляные формы, для крупных заготовок - литье в закрытые формы. Ручную формовку в опоках по моделям или шаблонам применяют для мелких и средних отливок деталей, имеющих форму тел вращения. В настоящее время получает распространение литье в жидкие быстротвердеющие смеси. Этот способ исключает необходимость сушки форм в печах. В серийном н массовом производстве применяют машинную формовку по деревянным или металлическим моделям. Отливки сложной конфигурации изготовляют в формах, которые собирают из стержней по шаблонам и кондукторам.

Отливки сложных форм из труднообрабатываемых резанием сплавов изготовляют по выплавляемым моделям , при этом обеспечивается точность размеров по 12…11-му квалитетам и шероховатости поверхности R а =6,3…1,6 мкм. По выплавляемым моделям изготовляют отливки как из черных, так и из цветных сплавов, причем в производстве отливок из сплавов, заливка которых должна производиться в холодные формы, применяют сочетание литья по выплавляемым моделям и способа гипсовой формовки.

Точные отливки с небольшими припусками на механическую обработку получают при литье в оболочковые формы . Этот способ, широко распространенный в настоящее время, основан на свойстве термореактивной смолопесчаной смеси принимать форму подогретой металлической модели и образовывать плотную и быстротвердеющую оболочку. Этот способ литья расширяет возможности автоматизации. Отливки имеют точность размеров по 14…12-му квалитетам и шероховатость R а =0,4 мкм.

К прогрессивным способам изготовления литых заготовок относится способ литья в металлические формы (кокили), который исключает процесс формовки, обеспечивает благоприятные условия охлаждения, а также простоту удаления отливок из формы. Перспективно применение податливых металлических форм, изготовляемых из пакетов чистовой, стали, а также тонкостенных водоохлаждаемых форм, в которых рабочая полость изготовляется в виде сменной штамповки. Применение вакуумного отсасывания при кокильном литье расширяет область его использования для изготовления тонкостенных корпусных деталей из алюминиевых и магниевых сплавов, а заливка в открытую форму с последующим выжиманием при смыкании полуформ (метод книжной» формовки) позволяет получать крупногабаритные тонкостенные отливки.

Для изготовления отливок с мелкозернистой структурой металла и повышенными механическими свойствами применяют способ центробежного литья , который получил наибольшее распространение при изготовлении отливок деталей, имеющих форму тел вращения (втулок, груб и т. д.), с точностью по 12-му квалитету.

Для изготовления заготовок деталей сложной конфигурации успешно применяют способ литья под давлением . Прочность отливок, изготовленных этим способом, на 30% выше прочности отливок, изготовленных литьем в земляные формы. Этот способ широко применяют в серийном и массовом производстве при изготовлении небольших деталей сложной формы. Современные автоматы для литья под давлением отливок массой до 300 г обеспечивают производительность до 6000…8000 отливок в час. Шероховатость поверхности заготовок R а =2,5…0,32 мкм.

Заготовки из металлокерамики изготовляют из порошков, различных металлов или из смеси их с порошками, например, графита, кремнезема, асбеста и др. Этот вид заготовок применяют для производства деталей, которые не могут быть изготовлены другими методами - из тугоплавких элементов (вольфрама, молибдена, магнитных материалов и пр.), из металлов, не образующих сплавов, из материалов, состоящих из смеси металла с неметаллами (медь - графит), и из пористых материалов.

Способ получения металлокерамических материалов основан на прессовании тонких металлических порошков в требуемой смеси в пресс-формах под давлением 100…600 МПа и последующем спекании при температуре немного ниже температуры плавления основного компонента. Этот способ носит название порошковой металлургии, и с его помощью изготовляют подшипники скольжения (с антифрикционными свойствами ), тормозные диски (с фрикционными свойствами ), самосмазывающиеся втулки, в которых поры на 20…30% объема под давлением заполняются смазкой (пористые), а также детали для электро- и радиотехнической промышленности (магниты). Достоинством порошковой металлургии также является возможность изготовления деталей, не требующих последующей механической обработки.

Кованые и штампованные заготовки (рис. 37) изготовляют различными способами, технологические характеристики которых приведены в табл. 5.

Так, для получения заготовок деталей в единичном и мелкосерийном производстве применяют ковочные молоты и гидравлические ковочные прессы. Заготовки характеризуются сравнительно грубым приближением к форме готовой детали и требуют больших затрат на последующую механическую обработку.

Для большего приближения формы заготовки к форме готовой детали в мелкосерийном производстве применяют подкладные штампы . Заготовку, предварительно выполненную свободной ковкой с помощью универсального кузнечного инструмента, помещают в подкладной штамп, где она принимает форму, более близкую к форме готовой детали.

В серийном и массовом производстве заготовки изготовляют на штамповочных молотах и прессах в открытых и закрытых штампах. В первом случае образуется облой, т. е. отход лишнего металла в результате истечения; облой компенсирует неточность в массе исходной заготовки. Во втором случае облой отсутствует, следовательно, расход металла на заготовку меньше. Технологическими процессами, интенсифицирующими технологию штамповки, являются: штамповка заготовок из центробежных отливок и отливок в кокиль, штамповка методом выдавливания в обычных закрытых и разъемных штампах, безоблойная штамповка, штамповка из периодического проката, объемная штамповка из заготовок, полученных непрерывной разливкой стали.

Штамповка заготовок, отлитых методами центробежного и кокильного литья , предназначается для изготовления заготовок типа пустотелых цилиндров, минуя процессы разливки стали в слитки и последующую их прокатку и расковку. При этом процессе заготовки для последующей штамповки или раскатки отливаются на центробежной машине, а затем в горячем виде (при t=1250…1300°С) извлекаются из кокиля или центробежной машины.

Метод выдавливания особенно эффективен при совмещении его с индукционным нагревом для изготовления таких крупных заготовок, как валы, валки, роторы и т. п.

Значительно большую экономию металла можно получить при внедрении прогрессивных технологических процессов штамповки на кривошипных горячештамповочных прессах, штамповки (горячего выдавливания) в цельных и разъемных матрицах, малоотходной штамповки (безоблойной и с противодавлением). Горячее выдавливание является эффективным процессом получения штамповок разнообразной конфигурации, чаще всего в виде стержней с фланцами различной формы, деталей с отростками и т. п., причем выдавливание как операция горячей штамповки часто применяется в качестве заготовительной операции для распределения металла в соответствии с формой детали, благодаря чему сокращаются отходы в облой. Еще более эффективна разновидность технологической схемы выдавливания - штамповка выдавливанием в разъемных матрицах . Наличие второй линии разъема позволяет получать поковки с отростками и поднутрениями, близкими к конфигурации детали. Сущность процесса малоотходной штамповки заключается в получении точных заготовок (преимущественно тел вращения) без облоя в закрытых штампах. Избыток металла (неизбежный при существующих способах резки заготовок) отводится в специальные полости штампа. Одной из разновидностей процесса является штамповка шестерен в штампах с клиновой облойной канавкой.

Существенным фактором экономии проката является применение для ковки и объемной штамповки заготовок, полученных непрерывной разливкой стали, не требующих высокой степени укова; причем эти заготовки без предварительной прокатки можно штамповать.

Из других прогрессивных технологических процессов, внедрение которых обеспечивает более эффективное использование металла, относится вальцовка заготовок на ковочных вальцах , в том числе многоклетьевых и автоматизированных, на которых заготовка требуемого переменного сечения может быть получена за один проход; радиальное обжатие (редуцирование), осуществляемое как в горячем, так и в холодном состоянии; раскатка, применение периодического проката для предварительного формообразования заготовок под штамповку.

Одним из способов производства заготовок из отливок является метод виброштамповки . Преимуществом метода является создание лучших условий деформирования в связи с уменьшением внешнего трения и скорости деформации. Штамповка может осуществляться в одно- и многоручьевых штампах; мелкие заготовки штампуют в многоштучных штампах.

Для получения заготовок из пруткового материала высадкой используют горизонтально-ковочные машины. Этот способ производителен и экономичен. Фасонные, а также пустотелые заготовки цилиндрической формы штампуют на гидравлических прессах. Пустотелые заготовки изготовляют прошивкой отверстия с последующей протяжкой через кольцо или высадкой, а болты, заклепки и подобные детали – на фрикционных винтовых прессах в специальных сборных штампах с разъемными матрицами. При штамповке на фрикционных прессах достигаются высокая точность изготовленных заготовок, уменьшение расхода материала и высокая производительность. Так, при изготовлении заклепок производительность прессов составляет до 1000 шт. в час.

Для изготовления заклепок и других подобных деталей в массовом производстве применяют также холодновысадочные пресс-автоматы. Производительность этих прессов составляет 400 шт. в минуту и более. Опали, полученные холодной высадкой из калиброванного проката, сличаются большой точностью (8-й квалитет). Для получения заготово к периодического профиля или для вытяжки металла в продольном и поперечном сечениях используют ковочные вальцы . Профиль переменного сечения получают, пропуская заготовку через ручей вальцов, сложный профиль - пропуская заготовку через несколько профилированных ручьев.

Точность размеров и шероховатость поверхностей штампованных заготовок повышают холодной калибровкой и плоскостным или объемным проглаживанием (чеканкой). Плоскостную чеканку применяют для небольших участков заготовок, а объемную - для заготовок небольшого размера. Заготовки можно чеканить и в горячем состоянии, однако точность горячей чеканки ниже, чем холодной. Горячую чеканку применяют преимущественно для крупных штампованных готовок.

Штамповкой заготовок из листового металла можно получать изделия простой и сложной конфигурации: шайбы, втулки, сепараторы подшипников качения, баки, кабины автомобилей и т. д. Для этих изделий характерна почти одинаковая толщина стенок, мало отличающаяся от толщины исходного материала (рис. 38).

Холодной листовой штамповкой могут быть получены заготовки на низкоуглеродистой стали, пластичной легированной стали, меди, латуни (с содержанием меди более 60% ), алюминия и некоторых его сплавов, а также из других пластичных листовых материалов толщиной от десятых долей миллиметра до 6…8 мм. Заготовки, получаемые из листа холодной штамповкой, отличаются высокой точностью размеров, во многих случаях не нуждаются в последующей механической обработке и поступают непосредственно на сборку.

Горячей листовой штамповкой могут быть получены заготовки из материала толщиной свыше 8…10 мм, а при низкой пластичности - из материала меньших толщин для изготовления деталей корпусов кораблей, цистерн, котлов, химических машин, аппаратов и др.

Совершенствование технологических процессов листоштамповочного производства в целях более эффективного использования листового проката осуществляется в трех направлениях: замена листа широким рулоном, применение листа без припусков и положительных допусков на габариты и всемерная замена штампованных деталей деталями, изготовленными из гнутых профилей.

Дальнейшее развитие процессов холодной листовой штамповки основывается на применении целевого, комбинированного и универсального оборудования с использованием специальной оснастки, а именно: универсальных блоков для пакетных штампов, электромагнитных блоков для пластинчатых штампов, универсальных штампов для геометрически подобных деталей и для штамповки по элементам, пинцетных штампов для вырубки крупногабаритных деталей и для групповой штамповки, штампов с использованием резины, жидкости и другой эластичной среды и упрощенных штампов (ленточных, литых, пластмассовых, с использованием бетона, дерева и т. д.).

При изготовлении крупногабаритных листовых деталей в настоящее время широко применяют беспрессовую штамповку, называемую гидравлической вытяжкой и основанную на использовании статического гидравлического давления, электрогидравлического эффекта и энергии подводного взрыва взрывчатых веществ. Гидравлическая вытяжка может быть использована для формообразования деталей из алюминиевых сплавов толщиной до 5 мм и стали толщиной до 3 мм. Высокое давление порядка 20…25 МПа передается либо непосредственно жидкостью, либо посредством резиновой диафрагмы или мешка. Гидравлическая вытяжка отличается более равномерным распределением напряжений в металле, чем при вытяжке пуансонами, и создает более благоприятные условия для формообразования с меньшими утонениями в процессе вытяжки.

К процессам холодной обработки давлением относятся холодная высадка и объемная штамповка выдавливанием . Высадку применяют для образования местных утолщений требуемой формы путем перераспределения и перемещения объема металла. Выдавливание применяют для изготовления полых деталей, деталей меньшей площадью поперечного сечения из толстой заготовки за счет истечения металла в зазор между матрицей и инструментом. В зависимости от направления перемещения металла по отношению к инструменту различают три шин выдавливания: прямое - металл течет в направлении рабочего движения инструмента, обратное - обратно рабочему движению и комбинированное - сочетание прямого и обратного видов. Прямое выдавливание применяют для изготовления сплошных деталей, а иноке пустотелых деталей типа гильз и труб. Обратное выдавливание применяют исключительно для получения пустотелых деталей. Комбинированное-для изготовления деталей сложной формы: с фигурным дном, с дном, имеющим отростки, с дном, расположенным внутри полой детали, и т. п.

Для формообразования, калибровки, отделки поверхности деталей машин и их упрочнения при обработке давлением в холодном состоянии применяют процессы бесштамповочной обработки, основанные на пластической деформации металлов. К ним относятся накатка шестерен, шлиц и резьб, накатка и раскатка поверхностей шариками п роликами. Эти способы позволяют осуществить размерно-чистовую обработку , улучшить микрогеометрию поверхностей, в ряде случаев упразднив отделочную обработку.

Находит применение также метод обкатки роликами (гидроспининг), успешно заменяющий не только обработку резанием и давильные работы, но и вытяжку. Этот способ заключается в постепенном обжатии роликами листовой, штампованной или литой заготовки, полученной на принудительно вращающейся оправке. Большие давления на ролики, достигающие 25 МПа, создаваемые гидравлическим приводом, позволяют весьма производительно обжимать полые детали цилиндрической, конической н параболической форм, получать летали сложной конфигурации с большим перепадом сечений с точностью в пределах 11-го квалитета и шероховатостью поверхности R а = 0,8…0,4 мкм.

Все операции листовой штамповки можно разделить на разделительные (отрезка, вырубка, пробивка, зачистка), в ходе которых одну часть заготовки отделяют от другой, и формоизменяющие (гибка, вытяжка, обжим, отбортовка, рельефная формовка, формовка), в которых одна часть заготовки перемещается относительно другой без разрушения заготовки (в пределах пластических деформаций).

Исходный толстый лист разделяют на мерные заготовки преимущественно газовой резкой.

Тонкие листы разделяют на заготовки обычно отрезкой на гильотинных и дисковых ножницах.

Горячую листовую штамповку производят преимущественно на гидравлических листоштамповочных и фрикционных винтовых прессах, реже - на кривошипных листоштамповочных прессах. Из специального оборудования для обработки листов в горячем состоянии следует отметить трех- и четырехвалковые гибочные вальцы, предназначенные для гибки листа в обечайку реверсивным прокатыванием листа между постепенно сближающимися валками.

Нагрев перед штамповкой ведут обычно в пламенных камерных печах периодического действия или в методических печах непрерывного действия. Прогрессивен индукционный электронагрев, при котором продолжительность процесса сокращается в 5…6 раз, а толщина слоя окалины уменьшается в 2…3 раза по сравнению со слоем окалины, полученным в пламенных печах. Резко повышается точность штамповки, создаются возможности автоматизации процесса, значительно улучшаются условия труда в прессовых (кузнечно-штамповочных) цехах.

Заготовки из круглого проката для валов в большинстве случаев более целесообразны, чем кованые или штампованные заготовки. Однако если масса заготовки из проката превышает массу штамповки более чем на 15%, лучше применять штампованные заготовки.

Изготовление заготовок из труб также является одним из рациональных способов. Несмотря на то, что тонна горячего проката стоит в среднем в 1,5 раза меньше, чем тонна труб, тем не менее экономия металла при производстве деталей из труб по сравнению с изготовлением из круглого проката может покрыть разницу в стоимости. Исключение может быть сделано только для деталей, которые подвергают дальнейшей неоднократной обработке (сверлению, фрезерованию и др.), и, если коэффициент использования материала ниже 0,5.

Максимального подобия конструктивных форм и размеров заготовок готовым деталям можно достигнуть применением специальных профилей металла. Применение периодического проката , т. е. проката с максимальным подобием заготовки и детали, обеспечивает повышение коэффициента использования металла при штамповке в среднем на 10…15% благодаря сокращению потерь на облой, содействуя одновременно повышению производительности труда как в заготовительных, так и в механообрабатывающих цехах. На рис. 39 приведены схемы периодической прокатки различных заготовок: распределительного вала (α); шаров, изготовленных методом поперечной раскатки (б). В приведенном примере масса заготовок из обычных профилей: распределительного вала - 7,95 кг и шаров 300 мм - 0,164 кг, а при использовании периодического проката - соответственно 6,32 и 0,125 кг, что составляет экономию металла 13 и 24%.

Из готового профильного проката заготовки изготовляют преимущественно в массовом производстве. Во многих случаях этот способ не требует применения механической обработки или ограничивает ее отделочными операциями.

Сварные заготовки позволяют получать изделия такой конфигурации, которая обычно получается в результате литья или обработки резанием. В современном машиностроении часто применяют штампосварные заготовки (рис. 40). Замена деталей, полученных из отливок и изготовленных обработкой резанием, штампосварными значительно снижает себестоимость.

Наряду со штампосварными применяют также и сварно-литые заготовки , например, при изготовлении заготовок для корпусных деталей, отличающихся большим разнообразием конструктивных форм, размеров, массы и материалов. Заготовку делят на ряд простейших частей, получаемых литьем, а затем соединяют их сваркой. Так изготовляют траверсы прессов, статоры турбин, станины станков и др. Этот вид заготовок резко снижает трудоемкость изготовления и металлоемкость изделия.

Применяют также заготовки из штампованных и литых частей, соединенных сваркой.

Заготовки из неметаллических материалов . К неметаллическим материалам, широко применяемым в машиностроении, относятся: пластические массы, древесина, резина, бумага, асбест, текстиль, кожа и др. Неметаллические материалы, обеспечивая необходимую прочность при небольшой массе изготовляемых из них деталей, придают деталям необходимые свойства: химическую устойчивость (к воздействию растворителей), водо-, газо- и паронепроницаемость, высокие изоляционные свойства и др.

Пластическими массами называют материалы, которые на определенной стадии их производства приобретают пластичность, т. е. способность под воздействием давления принимать соответствующую форму и в дальнейшем сохранять ее. В зависимости от химических свойств исходных смолообразных веществ пластические массы, получаемые на их основе, делят на две основные группы:

  • термореактивные пластические массы на основе термореактивных смол, отличающиеся тем, что при действии повышенных температур они претерпевают ряд химических изменений и превращаются в неплавкие и практически нерастворимые продукты;
  • термопластичные массы (термопласты), получаемые на основе термопластичных смол и отличающиеся тем, что при нагревании они размягчаются, сохраняя плавкость, растворимость и способность к повторному формованию.

Разнообразие физико-химических и механических свойств и простота переработки в изделия обусловливают широкое применение различных видов пластических масс в машиностроении и других отраслях народного хозяйства. Сравнительно небольшая плотность (1000…2000 кг/м3), значительная механическая прочность и высокие фрикционные свойства позволяют в ряде случаев применять пластические массы в качестве заменителей, например, цветных металлов и их сплавов - бронзы, свинца, олова, баббита и т. п., а при наличии некоторых специальных свойств (например, коррозионная стойкость) пластмассы можно использовать и в качестве заменителей черных металлов. Высокие электроизоляционные свойства способствуют применению пластических масс в электро- и радиопромышленности в качестве заменителей таких материалов, как фарфор, эбонит, шеллак, слюда, натуральный каучук и многие другие. Хорошая химическая стойкость при воздействии растворителей и некоторых окислителей, водостойкость, газо- и паронепроницаемость позволяют применять пластические массы как технически важные материалы в автотракторной, судостроительной и других отраслях промышленности.

Детали из пластических масс получают прессованием, литьем под давлением и литьем в формы. Наиболее распространенным способом получения деталей из пластических масс является способ горячего прессования при необходимом давлении и температуре. В качестве основного оборудования для прессования пластмасс обычно применяют гидравлические прессы. Однако в некоторых случаях можно применять и другие типы прессов, например фрикционные, винтовые. Прессование производят в металлических пресс-формах, устанавливаемых на прессах. Пресс-формы являются основным видом оснастки в производстве изделий из пластических масс. Во время прессования пресс-формы находятся в очень неблагоприятных эксплуатационных условиях. Они воспринимают многократные силовые нагрузки (давление пресса достигает 20…30 МПа, а иногда 60…80 МПа), систематическое воздействие высоких температур (до 190°С) и агрессивное коррозионное воздействие выделяющихся в процессе прессования продуктов химических превращений.

Важным промышленным способом производства деталей из пластмасс является способ литья под давлением . Он во многом сходен со способом литья под давлением металлов. Сущность его заключается в следующем: в загрузочные приспособления специальных машин помещают пластическую массу, затем подают их в обогревающее устройство, где пластмасса расплавляется и под действием поршня (плунжера), передающего давление, впрыскивается в пресс-форму. Машины для литья под давлением пластмасс высокопроизводительны: до 12…16 тыс. шт. за смену. Этим способом можно изготовлять различные детали со сложными резьбами и профилями, тонкостенные детали и т. п. Литье в формы применяют в тех случаях, когда детали изготовляют из связующего без наполнителя. Этот способ применяют также для получения различных литых деталей из термореактивных пластмасс, например, литого карболита, неолейкорита, литого резита, а также из термопластичных материалов - органического стекла, полистирола и др.

Детали из слоистых пластиков широко распространены в машиностроении. Например, текстолитовые зубчатые колеса отличаются от металлических бесшумностью работы и устойчивостью против влияния различных агрессивных сред. В ряде случаев текстолитовые зубчатые колеса почти совсем вытеснили зубчатые колеса из цветных металлов. Их применяют для передачи вращения от электродвигателей в быстроходных металлообрабатывающих станках, устанавливают на распределительных валах двигателей внутреннего сгорания. В химической промышленности текстолитовые зубчатые колеса применяют в различных аппаратах и приборах, где они гораздо лучше, чем зубчатые колеса из бронзы и латуни, сопротивляются различным агрессивным воздействиям. Помимо зубчатых колес из текстолита изготовляют ролики, кольца и т. п.

Древесина различных пород, являющаяся сравнительно дешевым материалом, применяется во многих отраслях современного машиностроения. Например, в сельскохозяйственном машиностроении и автотракторостроении используется древесина сосны, ели, кавказской пихты, лиственницы, дуба, бука, ясеня, березы, клена, граба, ильмы, вяза. Из древесины твердых лиственных пород и лиственницы изготовляют ответственные детали сельскохозяйственных машин, подвергающиеся большим нагрузкам.

Древесные материалы применяют в машиностроении как конструкционные материалы, главным образом в виде шпона, клееной фанеры, пельнопрессованной древесины и древесных пластиков.

Для повышения устойчивости древесины против гниения ее специально обрабатывают: сушат на воздухе и в специальных сушильных камерах, а также пропитывают медным купоросом, хлористым цинком или креозотом и окрашивают.

Из древесных материалов методами холодного и горячего гнутья можно получать изделия сложной криволинейной формы. Метод холодного гнутья заключается в том, что на шаблоне выгибают и запрессовывают заготовку в виде набора тонких деревянных пластинок, покрытых клеем, без подогрева. При горячем гнутье заготовку предварительно проваривают или пропаривают, вследствие чего она приобретает пластичность, затем выгибают на шаблоне и в таком положении зажимают и помещают в сушильную камеру.

Наряду с обычной древесиной (так называемым массивом) в машиностроении применяют фанеру и слоистые древесные материалы. Фанера представляет собой листовой материал, изготовленный путем склеивания между собой нескольких тонких деревянных листов (шпона). Для изготовления нагруженных деталей применяют многослойную, или плиточную, фанеру толщиной 25…30 мм.

Тонкие листы (шпон), пропитанные специальными смолами и подвергнутые горячему прессованию, образуют так называемые древесно-слоистые пластики , широко применяемые в текстильном и электротехническом машиностроении, а также в качестве заменителя подшипников из цветных металлов в гидравлических машинах, механизмах, работающих в абразивной среде.

Механическую обработку изделий из древесины производят на металлорежущих и деревообрабатывающих станках.

Рассказать друзьям